bims-proned Biomed News
on Proteostasis in neurodegeneration
Issue of 2024–02–25
six papers selected by
Verena Kohler, Umeå University



  1. Int J Mol Sci. 2024 Feb 17. pii: 2364. [Epub ahead of print]25(4):
      Neurodegenerative diseases encompass a heterogeneous group of disorders that afflict millions of people worldwide. Characteristic protein aggregates are histopathological hallmark features of these disorders, including Amyloid β (Aβ)-containing plaques and tau-containing neurofibrillary tangles in Alzheimer's disease, α-Synuclein (α-Syn)-containing Lewy bodies and Lewy neurites in Parkinson's disease and dementia with Lewy bodies, and mutant huntingtin (mHTT) in nuclear inclusions in Huntington's disease. These various aggregates are found in specific brain regions that are impacted by neurodegeneration and associated with clinical manifestations. Transglutaminase (TG2) (also known as tissue transglutaminase) is the most ubiquitously expressed member of the transglutaminase family with protein crosslinking activity. To date, Aβ, tau, α-Syn, and mHTT have been determined to be substrates of TG2, leading to their aggregation and implicating the involvement of TG2 in several pathophysiological events in neurodegenerative disorders. In this review, we summarize the biochemistry and physiologic functions of TG2 and describe recent advances in the pathogenetic role of TG2 in these diseases. We also review TG2 inhibitors tested in clinical trials and discuss recent TG2-targeting approaches, which offer new perspectives for the design of future highly potent and selective drugs with improved brain delivery as a disease-modifying treatment for neurodegenerative disorders.
    Keywords:  Alzheimer’s disease; Huntington’s disease; Parkinson’s disease; neurodegenerative disorders; protein crosslinking; transglutaminase 2
    DOI:  https://doi.org/10.3390/ijms25042364
  2. Mol Neurodegener. 2024 Feb 20. 19(1): 20
      The conversion of native peptides and proteins into amyloid aggregates is a hallmark of over 50 human disorders, including Alzheimer's and Parkinson's diseases. Increasing evidence implicates misfolded protein oligomers produced during the amyloid formation process as the primary cytotoxic agents in many of these devastating conditions. In this review, we analyze the processes by which oligomers are formed, their structures, physicochemical properties, population dynamics, and the mechanisms of their cytotoxicity. We then focus on drug discovery strategies that target the formation of oligomers and their ability to disrupt cell physiology and trigger degenerative processes.
    Keywords:  Aggregation kinetics; Amyloid toxicity; Biophysics; Cellular interactions; Diagnostics; Drug discovery; Fibril fragmentation; Lecanemab; Protofibrils; Secondary nucleation; Therapeutics
    DOI:  https://doi.org/10.1186/s13024-023-00651-2
  3. Eur J Med Chem. 2024 Feb 06. pii: S0223-5234(24)00078-3. [Epub ahead of print]268 116198
      α-Syn fibers, the primary cause and central element of Lewy bodies (LB), play a pivotal role in the development of Parkinson's disease (PD). This research aims to identify more potent inhibitors of α-Syn aggregation. A series of N-aryl-3-aryl-pyrazole-5-carboxamide derivatives were designed and synthesized for this purpose. Among them, four candidate compounds, combining pyrazole and polyphenol blocks, were identified through screening, demonstrating good inhibitory effects with IC50 values in the low micromolar range (1.25-4.29 μM). Two candidates exhibited high permeability through the blood-brain barrier. Mechanistic studies using various methods revealed that the candidates preferentially bind to the aggregation-prone domains-proNAC or NAC domains of α-Syn. This binding hinders the conformational transition from random coil/α-helix to β-sheet, preserving α-Syn proteostasis. As a result, it interferes with α-Syn nuclei formation, prolongs the lag phase, decelerates the elongation phase, and ultimately impedes the formation of α-Syn fibrils. Additionally, the candidates demonstrated promising results in the disaggregation of preformed α-Syn fibers, potentially by binding to specific sites near the β-sheet domain within fibers. This reduces fiber stability, causing rapid collapse and yielding smaller aggregates and monomers. Crucially, the candidate compounds exhibited significant inhibitory efficacy against α-Syn aggregation within nerve cells with low cytotoxicity. This resulted in a notable inhibition of the formation of LB-like α-Syn inclusions. These compounds show considerable promise as potential therapeutic agents for the prevention and treatment of PD.
    Keywords:  Anti-α-Syn-aggregation; Disaggregation; Inclusion formation inhibition; Mechanism; Pyrazolamides
    DOI:  https://doi.org/10.1016/j.ejmech.2024.116198
  4. bioRxiv. 2024 Feb 05. pii: 2023.10.04.560952. [Epub ahead of print]
      Protein misfolding, aggregation, and spread through the brain are primary drivers of neurodegenerative diseases pathogenesis. Phagocytic glia are responsible for regulating the load of pathogenic protein aggregates in the brain, but emerging evidence suggests that glia may also act as vectors for aggregate spread. Accumulation of protein aggregates could compromise the ability of glia to eliminate toxic materials from the brain by disrupting efficient degradation in the phagolysosomal system. A better understanding of phagocytic glial cell deficiencies in the disease state could help to identify novel therapeutic targets for multiple neurological disorders. Here, we report that mutant huntingtin (mHTT) aggregates impair glial responsiveness to injury and capacity to degrade neuronal debris in male and female adult Drosophila expressing the gene that causes Huntington's disease (HD). mHTT aggregate formation in neurons impairs engulfment and clearance of injured axons and causes accumulation of phagolysosomes in glia. Neuronal mHTT expression induces upregulation of key innate immunity and phagocytic genes, some of which were found to regulate mHTT aggregate burden in the brain. Finally, a forward genetic screen revealed Rab10 as a novel component of Draper-dependent phagocytosis that regulates mHTT aggregate transmission from neurons to glia. These data suggest that glial phagocytic defects enable engulfed mHTT aggregates to evade lysosomal degradation and acquire prion-like characteristics. Together, our findings reveal new mechanisms that enhance our understanding of the beneficial and potentially harmful effects of phagocytic glia in HD and potentially other neurodegenerative diseases.
    SIGNIFICANCE STATEMENT: Deposition of amyloid aggregates is strongly associated with neurodegenerative disease progression and neuronal cell loss. Many studies point to glial cells as dynamic mediators of disease, capable of phagocytosing toxic materials, but also promoting chronic inflammation and proteopathic aggregate spread. Thus, glia have emerged as promising therapeutic targets for disease intervention. Here, we demonstrate in a Drosophila model of Huntington's disease that neuronal mHTT aggregates interfere with glial phagocytic engulfment, phagolysosomal processing, and innate immunity transcriptional responses. We also identify Rab10 as a novel modifier of prion-like transmission of mHTT aggregates. Our findings add to a growing narrative of glia as double-edged players in neurodegenerative diseases.
    DOI:  https://doi.org/10.1101/2023.10.04.560952
  5. Mol Pharm. 2024 Feb 19.
      Parkinson's disease (PD) is a severe pathology that is caused by a progressive degeneration of dopaminergic neurons in substantia nigra pars compacta as well as other areas in the brain. These neurodegeneration processes are linked to the abrupt aggregation of α-synuclein (α-syn), a small protein that is abundant at presynaptic nerve termini, where it regulates cell vesicle trafficking. Due to the direct interactions of α-syn with cell membranes, a substantial amount of work was done over the past decade to understand the role of lipids in α-syn aggregation. However, the role of phosphatidic acid (PA), a negatively charged phospholipid with a small polar head, remains unclear. In this study, we examined the effect of PA large unilamellar vesicles (LUVs) on α-syn aggregation. We found that PA LUVs with 16:0, 18:0, and 18:1 FAs drastically reduced the toxicity of α-syn fibrils if were present in a 1:1 molar ratio with the protein. Our results also showed that the presence of these vehicles changed the rate of α-syn aggregation and altered the morphology and secondary structure of α-syn fibrils. These results indicate that PA LUVs can be used as a potential therapeutic strategy to reduce the toxicity of α-syn fibrils formed upon PD.
    Keywords:  AFM-IR; LDH; fibrils; phosphatidic acid; α-synuclein
    DOI:  https://doi.org/10.1021/acs.molpharmaceut.3c01012
  6. Curr Protoc. 2024 Feb;4(2): e957
      In neurodegenerative diseases like Alzheimer's disease (AD), endogenous proteins or peptides aggregate with themselves. These proteins may lose their function or aggregates and/or oligomers can obtain toxicity, causing injury or death to cells. Aggregation of two major proteins characterizes AD. Amyloid-β peptide (Aβ) is deposited in amyloid plaques within the extracellular space of the brain and Tau in so-called neurofibrillary tangles in neurons. Finding peptide ligands to halt protein aggregation is a promising therapeutical approach. Using mirror-image phage display with a commercially available, randomized 12-mer peptide library, we have selected D-amino acid peptides, which bind to the Tau protein and modulate its aggregation in vitro. Peptides can bind specifically and selectively to a target molecule, but natural L-amino acid peptides may have crucial disadvantages for in vivo applications, as they are sensitive to protease degradation and may elicit immune responses. One strategy to circumvent these disadvantages is the use of non-naturally occurring D-amino acid peptides as they exhibit increased protease resistance and generally do not activate the immune system. To perform mirror-image phage display, the target protein needs to be synthesized as D-amino acid version. If the target protein sequence is too long to be synthesized properly, smaller peptides derived from the full length protein can be used for the selection process. This also offers the possibility to influence the binding region of the selected D-peptides in the full-length target protein. Here we provide the protocols for mirror-image phage display selection on the PHF6* peptide of Tau, based on the commercially available Ph.D.™-12 Phage Display Peptide Library Kit, leading to D-peptides that also bind the full length Tau protein (Tau441), next to PHF6*. In addition, we provide protocols and data for the first characterization of those D-peptides that inhibit Tau aggregation in vitro. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Mirror image phage display selection against D-PHF6* fibrils Support Protocol 1: Single phage ELISA Basic Protocol 2: Sequencing and D-peptide generation Basic Protocol 3: Thioflavin-T (ThT) test to control inhibition of Tau aggregation Support Protocol 2: Purification of full-length Tau protein Basic Protocol 4: ELISA to demonstrate the binding of the generated D-peptides to PHF6* and full-length Tau fibrils.
    Keywords:   D-enantiomer; mirror image phage display; peptide ligands; phage display
    DOI:  https://doi.org/10.1002/cpz1.957