bims-proned Biomed News
on Proteostasis in neurodegeneration
Issue of 2023–12–03
seventeen papers selected by
Verena Kohler, Umeå University



  1. Neuroscience. 2023 Nov 29. pii: S0306-4522(23)00532-8. [Epub ahead of print]
      Parkinson's disease (PD) is the second most common neurodegenerative disease, characterized by abnormal α-synuclein misfolding and aggregation, mitochondrial dysfunction, oxidative stress, as well as progressive death of dopaminergic neurons in the substantia nigra. Molecular chaperones play a role in stabilizing proteins and helping them achieve their proper structure. Previous studies have shown that overexpression of heat shock protein 90 (HSP90) can lead to the death of dopaminergic neurons associated with PD. Inhibiting HSP90 is considered a potential treatment approach for neurodegenerative disorders, as it may reduce protein aggregation and related toxicity, as well as suppress various forms of regulated cell death (RCD). This review provides an overview of HSP90 and its role in PD, focusing on its modulation of proteostasis and quality control of LRRK2. The review also explores the effects of HSP90 on different types of RCD, such as apoptosis, chaperone-mediated autophagy (CMA), necroptosis, and ferroptosis. Additionally, it discusses HSP90 inhibitors that have been tested in PD models. We will highlight the under-investigated neuroprotective effects of HSP90 inhibition, including modulation of oxidative stress, mitochondrial dysfunction, PINK/PARKIN, heat shock factor 1 (HSF1), histone deacetylase 6 (HDAC6), and the PHD2-HSP90 complex-mediated mitochondrial stress pathway. By examining previous literature, this review uncovers overlooked neuroprotective mechanisms and emphasizes the need for further research on HSP90 inhibitors as potential therapeutic strategies for PD. Finally, the review discusses the potential limitations and possibilities of using HSP90 inhibitors in PD therapy.
    Keywords:  Chaperones; Heat shock protein 90; Parkinson's disease; Regulated cell death; chaperone-mediated autophagy
    DOI:  https://doi.org/10.1016/j.neuroscience.2023.11.031
  2. Cell Mol Life Sci. 2023 Nov 27. 80(12): 378
      A common perception in age-related neurodegenerative diseases posits that a decline in proteostasis is key to the accumulation of neuropathogenic proteins, such as amyloid beta (Aβ), and the development of sporadic Alzheimer's disease (AD). To experimentally challenge the role of protein homeostasis in the accumulation of Alzheimer's associated protein Aβ and levels of associated Tau phosphorylation, we disturbed proteostasis in single APP knock-in mouse models of AD building upon Rps9 D95N, a recently identified mammalian ram mutation which confers heightened levels of error-prone translation together with an increased propensity for random protein aggregation and which is associated with accelerated aging. We crossed the Rps9 D95N mutation into knock-in mice expressing humanized Aβ with different combinations of pathogenic mutations (wild-type, NL, NL-F, NL-G-F) causing a stepwise and quantifiable allele-dependent increase in the development of Aβ accumulation, levels of phosphorylated Tau, and neuropathology. Surprisingly, the misfolding-prone environment of the Rps9 D95N ram mutation did not affect Aβ accumulation and plaque formation, nor the level of phosphorylated Tau in any of the humanized APP knock-in lines. Our findings indicate that a misfolding-prone environment induced by error-prone translation with its inherent perturbations in protein homeostasis has little impact on the accumulation of pathogenic Aβ, plaque formation and associated phosphorylated Tau.
    Keywords:  Alzheimer’s disease; Amyloid beta; Error-prone translation; Neurodegenerative disease; Protein misfolding; Proteostasis
    DOI:  https://doi.org/10.1007/s00018-023-05031-z
  3. Cell Chem Biol. 2023 Nov 24. pii: S2451-9456(23)00420-8. [Epub ahead of print]
      Cerebral dopamine neurotrophic factor (CDNF) is an unconventional neurotropic factor that modulates unfolded protein response (UPR) pathway signaling and alleviates endoplasmic reticulum (ER) stress providing cytoprotective effects in different models of neurodegenerative disorders. Here, we developed a brain-penetrating peptidomimetic compound based on human CDNF. This compound called HER-096 shows similar potency and mechanism of action as CDNF, and promotes dopamine neuron survival, reduces α-synuclein aggregation and modulates UPR signaling in in vitro models. HER-096 is metabolically stable and able to penetrate to cerebrospinal (CSF) and brain interstitial fluids (ISF) after subcutaneous administration, with an extended CSF and brain ISF half-life compared to plasma. Subcutaneously administered HER-096 modulated UPR pathway activity, protected dopamine neurons, and reduced α-synuclein aggregates and neuroinflammation in substantia nigra of aged mice with synucleinopathy. Peptidomimetic HER-096 is a candidate for development of a disease-modifying therapy for Parkinson's disease with a patient-friendly route of administration.
    Keywords:  CDNF; Parkinson’s disease; cerebral dopamine neurotrophic factor; disease modification; drug development; endoplasmic reticulum stress; neurodegeneration; neuroinflammation; peptidomimetic; synucleinopathy; unfolded protein response
    DOI:  https://doi.org/10.1016/j.chembiol.2023.11.005
  4. Front Physiol. 2023 ;14 1263420
      Most mitochondrial proteins are targeted to the organelle by N-terminal mitochondrial targeting sequences (MTSs, or "presequences") that are recognized by the import machinery and subsequently cleaved to yield the mature protein. MTSs do not have conserved amino acid compositions, but share common physicochemical properties, including the ability to form amphipathic α-helical structures enriched with basic and hydrophobic residues on alternating faces. The lack of strict sequence conservation implies that some polypeptides can be mistargeted to mitochondria, especially under cellular stress. The pathogenic accumulation of proteins within mitochondria is implicated in many aging-related neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Mechanistically, these diseases may originate in part from mitochondrial interactions with amyloid-β precursor protein (APP) or its cleavage product amyloid-β (Aβ), α-synuclein (α-syn), and mutant forms of huntingtin (mHtt), respectively, that are mediated in part through their associations with the mitochondrial protein import machinery. Emerging evidence suggests that these amyloidogenic proteins may present cryptic targeting signals that act as MTS mimetics and can be recognized by mitochondrial import receptors and transported into different mitochondrial compartments. Accumulation of these mistargeted proteins could overwhelm the import machinery and its associated quality control mechanisms, thereby contributing to neurological disease progression. Alternatively, the uptake of amyloidogenic proteins into mitochondria may be part of a protein quality control mechanism for clearance of cytotoxic proteins. Here we review the pathomechanisms of these diseases as they relate to mitochondrial protein import and effects on mitochondrial function, what features of APP/Aβ, α-syn and mHtt make them suitable substrates for the import machinery, and how this information can be leveraged for the development of therapeutic interventions.
    Keywords:  amyloids; cryptic targeting; mitochondria; neurodegeneration; protein import; targeting signals
    DOI:  https://doi.org/10.3389/fphys.2023.1263420
  5. CNS Neurol Disord Drug Targets. 2023 Nov 28.
      Neurodegenerative conditions like Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) encompass disorders characterized by the degeneration of neurons in specific circumstances. The quest for novel agents to influence these diseases, particularly AD, has unearthed various natural compounds displaying multifaceted activities and diverse pharmacological mechanisms. Given the ongoing extensive study of pathways associated with the accumulation of neurofibrillary aggregates and amyloid plaques, this paper aims to comprehensively review around 130 studies exploring natural products. These studies focus on inhibiting the formation of amyloid plaques and tau protein tangles, with the objective of potentially alleviating or delaying AD.
    Keywords:  Alzheimer’s disease; Flavonoids; Neurodegeneration; Polyphenols
    DOI:  https://doi.org/10.2174/0118715273273539231114095300
  6. J Parkinsons Dis. 2023 Nov 18.
      Despite its devastating disease burden and alarming prevalence, the etiology of Parkinson's disease (PD) remains to be completely elucidated. PD is characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta and this correlates with the accumulation of misfolded α-synuclein. While the aggregation of α-synuclein in the form of Lewy bodies or Lewy neurites is a well-established intraneuronal hallmark of the disease process, our understanding of the glial contribution to aberrant α-synuclein proteostasis is lacking. In this regard, restoring astrocyte function during early PD could offer a promising therapeutic avenue and understanding the involvement of astrocytes in handling/mishandling of α-synuclein is of particular interest. Here, we explore the growing body of scientific literature implicating aberrant astrocytic α-synuclein proteostasis with the seemingly inexorable pathological sequelae typifying PD. We also provide a perspective on how heterogeneity in the morphological relationship between astrocytes and neurons will need to be considered in the context of PD pathogenesis.
    Keywords:   α-synuclein; S100B; aggregation; astrocytes; calcium signals; exosomes; glial fibrillary acid protein; heterogeneity; mitochondria; tunnelling nanotubules
    DOI:  https://doi.org/10.3233/JPD-230284
  7. RSC Chem Biol. 2023 Nov 29. 4(12): 974-985
      Metal ions have been implicated in several proteinopathies associated to degenerative and neurodegenerative diseases. While the molecular mechanisms for protein aggregation are still under investigation, recent findings from Cryo-EM point out to polymorphisms in aggregates obtained from patients, as compared to those formed in vitro, suggesting that several factors may impact aggregation in vivo. One of these factors could be the direct binding of metal ions to the proteins engaged in aggregate formation. In this opinion article, three case studies are discussed to address the question of how metal ion binding to a peptide or protein may impact its conformation, folding, and aggregation, and how this may be relevant in understanding the polymorphic nature of the aggregates related to disease. Specifically, the impact of Cu2+ ions in the amyloid aggregation of amyloid-β and amylin (or IAPP- islet amyloid polypeptide) are discussed and then contrasted to the case of Cu2+-induced non-amyloid aggregation of human lens γ-crystallin proteins. For the intrinsically disordered peptides amyloid-β and IAPP, the impact of Cu2+ ion binding is highly dependent on the relative location of the metal binding site and the hydrophobic regions involved in β-sheet folding and amyloid formation. Further structural studies of how Cu2+ binding impacts amyloid aggregation pathways and the molecular structure of the final amyloid fibril, both, in vitro and in vivo, will certainly shed light into the molecular origins of the polymorphisms observed in diseased tissue. Finally, contrasting these cases to that of Cu2+-induced non-amyloid aggregation of γ-crystallins, it is evident that, although the impact in aggregation - and the nature of the aggregate - may differ in each system, at the molecular level there is a competition between metal ion coordination and the stability of β-sheet structures. Considering the importance of the β-sheet fold in biology, it is fundamental to understand the energetics and molecular details behind such competition. This opinion article aims to highlight future research directions in the field that can help tackle the important question of how metal ion binding may impact protein folding and aggregation and how this relates to disease.
    DOI:  https://doi.org/10.1039/d3cb00145h
  8. Front Mol Biosci. 2023 ;10 1290118
      The protein homeostasis (proteostasis) network is a nexus of molecular mechanisms that act in concert to maintain the integrity of the proteome and ensure proper cellular and organismal functionality. Early in life the proteostasis network efficiently preserves the functionality of the proteome, however, as the organism ages, or due to mutations or environmental insults, subsets of inherently unstable proteins misfold and form insoluble aggregates that accrue within the cell. These aberrant protein aggregates jeopardize cellular viability and, in some cases, underlie the development of devastating illnesses. Hence, the accumulation of protein aggregates activates different nodes of the proteostasis network that refold aberrantly folded polypeptides, or direct them for degradation. The proteostasis network apparently functions within the cell, however, a myriad of studies indicate that this nexus of mechanisms is regulated at the organismal level by signaling pathways. It was also discovered that the proteostasis network differentially responds to dissimilar proteotoxic insults by tailoring its response according to the specific challenge that cells encounter. In this mini-review, we delineate the proteostasis-regulating neuronal mechanisms, describe the indications that the proteostasis network differentially responds to distinct proteotoxic challenges, and highlight possible future clinical prospects of these insights.
    Keywords:  Alzheimer’s disease; C. elegans; neurodegeneration; neuropeptides; proteostasis; proteotoxicity
    DOI:  https://doi.org/10.3389/fmolb.2023.1290118
  9. Database (Oxford). 2023 11 27. pii: baad084. [Epub ahead of print]2023
      Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder, yet effective treatments able to stop or delay disease progression remain elusive. The aggregation of a presynaptic protein, α-synuclein (aSyn), is the primary neurological hallmark of PD and, thus, a promising target for therapeutic intervention. However, the lack of consensus on the molecular properties required to specifically bind the toxic species formed during aSyn aggregation has hindered the development of therapeutic molecules. Recently, we defined and experimentally validated a peptide architecture that demonstrated high affinity and selectivity in binding to aSyn toxic oligomers and fibrils, effectively preventing aSyn pathogenic aggregation. Human peptides with such properties may have neuroprotective activities and hold a huge therapeutic interest. Driven by this idea, here, we developed a discriminative algorithm for the screening of human endogenous neuropeptides, antimicrobial peptides and diet-derived bioactive peptides with the potential to inhibit aSyn aggregation. We identified over 100 unique biogenic peptide candidates and ensembled a comprehensive database (aSynPEP-DB) that collects their physicochemical features, source datasets and additional therapeutic-relevant information, including their sites of expression and associated pathways. Besides, we provide access to the discriminative algorithm to extend its application to the screening of artificial peptides or new peptide datasets. aSynPEP-DB is a unique repository of peptides with the potential to modulate aSyn aggregation, serving as a platform for the identification of previously unexplored therapeutic agents. Database URL:  https://asynpepdb.ppmclab.com/.
    DOI:  https://doi.org/10.1093/database/baad084
  10. Mol Neurodegener. 2023 Nov 27. 18(1): 91
       BACKGROUND: Alpha-synuclein (α-syn) aggregation into proteinaceous intraneuronal inclusions, called Lewy bodies (LBs), is the neuropathological hallmark of Parkinson's disease (PD) and related synucleinopathies. However, the exact role of α-syn inclusions in PD pathogenesis remains elusive. This lack of knowledge is mainly due to the absence of optimal α-syn-based animal models that recapitulate the different stages of neurodegeneration.
    METHODS: Here we describe a novel approach for a systemic delivery of viral particles carrying human α-syn allowing for a large-scale overexpression of this protein in the mouse brain. This approach is based on the use of a new generation of adeno-associated virus (AAV), AAV-PHP.eB, with an increased capacity to cross the blood-brain barrier, thus offering a viable tool for a non-invasive and large-scale gene delivery in the central nervous system.
    RESULTS: Using this model, we report that widespread overexpression of human α-syn induced selective degeneration of dopaminergic (DA) neurons, an exacerbated neuroinflammatory response in the substantia nigra and a progressive manifestation of PD-like motor impairments. Interestingly, biochemical analysis revealed the presence of insoluble α-syn oligomers in the midbrain. Together, our data demonstrate that a single non-invasive systemic delivery of viral particles overexpressing α-syn prompted selective and progressive neuropathology resembling the early stages of PD.
    CONCLUSIONS: Our new in vivo model represents a valuable tool to study the role of α-syn in PD pathogenesis and in the selective vulnerability of nigral DA neurons; and offers the opportunity to test new strategies targeting α-syn toxicity for the development of disease-modifying therapies for PD and related disorders.
    Keywords:  AAV-PHP.eB; Adeno-associated virus; Alpha-synuclein; Animal model; Genetic model of PD; Neurodegeneration; PD-like symptoms; Parkinson’s Disease; Protein aggregation.; Systemic delivery
    DOI:  https://doi.org/10.1186/s13024-023-00683-8
  11. Front Aging Neurosci. 2023 ;15 1281338
      Alzheimer's disease (AD) is characterized by the accumulation of misfolded amyloid-beta and tau proteins. Autophagy acts as a proteostasis process to remove protein clumps, although it progressively weakens with aging and AD, thus facilitating the accumulation of toxic proteins and causing neurodegeneration. This review examines the impact of impaired autophagy on the progression of AD disease pathology. Under normal circumstances, autophagy removes abnormal proteins and damaged organelles, but any dysfunction in this process can lead to the exacerbation of amyloid and tau pathology, particularly in AD. There is increasing attention to therapeutic tactics to revitalize autophagy, including reduced caloric intake, autophagy-stimulating drugs, and genetic therapy. However, the translation of these strategies into clinical practice faces several hurdles. In summary, this review integrates the understanding of the intricate role of autophagy dysfunction in Alzheimer's disease progression and reinforces the promising prospects of autophagy as a beneficial target for treatments to modify the course of Alzheimer's disease.
    Keywords:  Alzheimer's disease; autophagy; neurodegeneration; oxidative stress; proteostasis
    DOI:  https://doi.org/10.3389/fnagi.2023.1281338
  12. Nat Rev Drug Discov. 2023 Nov 27.
      Synapse dysfunction and loss are hallmarks of neurodegenerative diseases that correlate with cognitive decline. However, the mechanisms and therapeutic strategies to prevent or reverse synaptic damage remain elusive. In this Review, we discuss recent advances in understanding the molecular and cellular pathways that impair synapses in neurodegenerative diseases, including the effects of protein aggregation and neuroinflammation. We also highlight emerging therapeutic approaches that aim to restore synaptic function and integrity, such as enhancing synaptic plasticity, preventing synaptotoxicity, modulating neuronal network activity and targeting immune signalling. We discuss the preclinical and clinical evidence for each strategy, as well as the challenges and opportunities for developing effective synapse-targeting therapeutics for neurodegenerative diseases.
    DOI:  https://doi.org/10.1038/s41573-023-00823-1
  13. Nat Commun. 2023 Nov 28. 14(1): 7816
      Protein misfolding and aggregation play central roles in the pathogenesis of various neurodegenerative diseases (NDDs), including Huntington's disease, which is caused by a genetic mutation in exon 1 of the Huntingtin protein (Httex1). The fluorescent labels commonly used to visualize and monitor the dynamics of protein expression have been shown to alter the biophysical properties of proteins and the final ultrastructure, composition, and toxic properties of the formed aggregates. To overcome this limitation, we present a method for label-free identification of NDD-associated aggregates (LINA). Our approach utilizes deep learning to detect unlabeled and unaltered Httex1 aggregates in living cells from transmitted-light images, without the need for fluorescent labeling. Our models are robust across imaging conditions and on aggregates formed by different constructs of Httex1. LINA enables the dynamic identification of label-free aggregates and measurement of their dry mass and area changes during their growth process, offering high speed, specificity, and simplicity to analyze protein aggregation dynamics and obtain high-fidelity information.
    DOI:  https://doi.org/10.1038/s41467-023-43440-7
  14. J Med Chem. 2023 Nov 29.
      In recent years, trehalose, a natural disaccharide, has attracted growing attention because of the discovery of its potential to induce autophagy. Trehalose has also been demonstrated to preserve the protein's structural integrity and to limit the aggregation of pathologically misfolded proteins. Both of these properties have made trehalose a promising therapeutic candidate to target autophagy-related disorders and protein aggregation diseases. Unfortunately, trehalose has poor bioavailability due to its hydrophilic nature and susceptibility to enzymatic degradation. Recently, trehalose-bearing carriers, in which trehalose is incorporated either by chemical conjugation or physical entrapment, have emerged as an alternative option to free trehalose to improve its efficacy, particularly for the treatment of neurodegenerative diseases, atherosclerosis, nonalcoholic fatty liver disease (NAFLD), and cancers. In the current Perspective, we discuss all existing literature in this emerging field and try to identify key challenges for researchers intending to develop trehalose-bearing carriers to stimulate autophagy or inhibit protein aggregation.
    DOI:  https://doi.org/10.1021/acs.jmedchem.3c01442
  15. Aging Dis. 2023 Nov 17.
      FUS and TDP-43, two RNA-binding proteins from the heterogeneous nuclear ribonucleoprotein family, have gained significant attention in the field of neurodegenerative diseases due to their association with amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). They possess folded domains for binding ATP and various nucleic acids including DNA and RNA, as well as substantial intrinsically disordered regions (IDRs) including prion-like domains (PLDs) and RG-/RGG-rich regions. They play vital roles in various cellular processes, including transcription, splicing, microRNA maturation, RNA stability and transport and DNA repair. In particular, they are key components for forming ribonucleoprotein granules and stress granules (SGs) through homotypic or heterotypic liquid-liquid phase separation (LLPS). Strikingly, liquid-like droplets formed by FUS and TDP-43 may undergo aging to transform into less dynamic assemblies such as hydrogels, inclusions, and amyloid fibrils, which are the pathological hallmarks of ALS and FTD. This review aims to synthesize and consolidate the biophysical knowledge of the sequences, structures, stability, dynamics, and inter-domain interactions of FUS and TDP-43 domains, so as to shed light on the molecular mechanisms underlying their liquid-liquid phase separation (LLPS) and amyloidosis. The review further delves into the mechanisms through which ALS-causing mutants of the well-folded hPFN1 disrupt the dynamics of LLPS of FUS prion-like domain, providing key insights into a potential mechanism for misfolding/aggregation-prone proteins to cause neurodegenerative diseases and aging by gain of functions. With better understanding of different biophysical aspects of FUS and TDP-43, the ultimate goal is to develop drugs targeting LLPS and amyloidosis, which could mediate protein homeostasis within cells and lead to new treatments for currently intractable diseases, particularly neurodegenerative diseases such as ALS, FTD and aging. However, the study of membrane-less organelles and condensates is still in its infancy and therefore the review also highlights key questions that require future investigation.
    DOI:  https://doi.org/10.14336/AD.2023.1118
  16. Front Pharmacol. 2023 ;14 1288894
      Parkinson's disease (PD) is a common neurodegenerative disorder with motor symptoms, which is caused by the progressive death of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). Accumulating evidence shows that endoplasmic reticulum (ER) stress occurring in the SNpc DA neurons is an early event in the development of PD. ER stress triggers the activation of unfolded protein response (UPR) to reduce stress and restore ER function. However, excessive and continuous ER stress and UPR exacerbate the risk of DA neuron death through crosstalk with other PD events. Thus, ER stress is considered a promising therapeutic target for the treatment of PD. Various strategies targeting ER stress through the modulation of UPR signaling, the increase of ER's protein folding ability, and the enhancement of protein degradation are developed to alleviate neuronal death in PD models. In this review, we summarize the pathological role of ER stress in PD and update the strategies targeting ER stress to improve ER protein homeostasis and PD-related events.
    Keywords:  ER stress; Parkinson’s disease; dopaminergic neurons; protein homeostasis; unfolded protein response
    DOI:  https://doi.org/10.3389/fphar.2023.1288894
  17. Cell Biosci. 2023 Dec 01. 13(1): 221
       BACKGROUND: Aberrant stress granules (SGs) are emerging as prime suspects in the nucleation of toxic protein aggregates. Understanding the molecular networks linked with aggregation-prone proteins (prion protein, synuclein, and tau) under stressful environments is crucial to understand pathophysiological cascades associated with these proteins.
    METHODS: We characterized and validated oxidative stress-induced molecular network changes of endogenous aggregation-prone proteins (prion protein, synuclein, and tau) by employing immunoprecipitation coupled with mass spectrometry analysis under basal and oxidative stress conditions. We used two different cell models (SH-SY5Y: human neuroblastoma and HeLa cell line) to induce oxidative stress using a well-known inducer (sodium arsenite) of oxidative stress.
    RESULTS: Overall, we identified 597 proteins as potential interaction partners. Our comparative interactome mapping provides comprehensive network reorganizations of three aggregation-prone hallmark proteins, establish novel interacting partners and their dysregulation, and validates that prion protein and synuclein localize in cytoplasmic SGs. Localization of prion protein and synuclein in TIA1-positive SGs provides an important link between SG pathobiology and aggregation-prone proteins. In addition, dysregulation (downregulation) of prion protein and exportin-5 protein, and translocation of exportin-5 into the nucleus under oxidative stress shed light on nucleocytoplasmic transport defects during the stress response.
    CONCLUSIONS: The current study contributes to our understanding of stress-mediated network rearrangements and posttranslational modifications of prion/prion-like proteins. Localization of prion protein and synuclein in the cytoplasmic SGs provides an important link between stress granule pathobiology and aggregation-prone proteins. In addition, our findings demonstrate nucleocytoplasmic transport defects after oxidative stress via dysregulation and nuclear accumulation of exportin-5.
    Keywords:  Interactomics; Neurodegenerative diseases; Oxidative stress; Prion/prion-like proteins; Stress granules
    DOI:  https://doi.org/10.1186/s13578-023-01164-7