bims-proned Biomed News
on Proteostasis in neurodegeneration
Issue of 2023–11–19
fourteen papers selected by
Verena Kohler, Umeå University



  1. Sci Adv. 2023 Nov 15. 9(46): eadi8716
      Recent studies have identified increasing levels of nanoplastic pollution in the environment. Here, we find that anionic nanoplastic contaminants potently precipitate the formation and propagation of α-synuclein protein fibrils through a high-affinity interaction with the amphipathic and non-amyloid component (NAC) domains in α-synuclein. Nanoplastics can internalize in neurons through clathrin-dependent endocytosis, causing a mild lysosomal impairment that slows the degradation of aggregated α-synuclein. In mice, nanoplastics combine with α-synuclein fibrils to exacerbate the spread of α-synuclein pathology across interconnected vulnerable brain regions, including the strong induction of α-synuclein inclusions in dopaminergic neurons in the substantia nigra. These results highlight a potential link for further exploration between nanoplastic pollution and α-synuclein aggregation associated with Parkinson's disease and related dementias.
    DOI:  https://doi.org/10.1126/sciadv.adi8716
  2. Protein Pept Lett. 2023 Nov 10.
      Alzheimer's disease, a neurodegenerative disease, is a progressive and irreversible disease that has become a global challenge due to its increasing prevalence and absence of available potential therapies. Protein misfolding and aggregation are known to be the root of several protein neurodegenerative diseases, including Alzheimer's disease. Protein aggregation is a phenomenon where misfolded proteins accumulate and clump together intra-or extracellularly. This accumulation of misfolded amyloid proteins leads to the formation of plaquesin the neuronal cells, also known as amyloid β plaques. The synthesis of amyloid β plaques and tau protein aggregation are the hallmarks of Alzheimer's disease. Potential therapeutics must be developed in conjunction with an understanding of the possible root cause involving complex mechanisms. The development of therapeutics that can inhibit protein misfolding and aggregation, involved in the pathogenesis of Alzheimer's disease, could be one of the potential solutions to the disease.
    Keywords:  Alzheimer’s disease; Protein aggregation; Protein misfolding; amyloidosis; inhibition; neurodegeneration
    DOI:  https://doi.org/10.2174/0109298665247757231020044633
  3. FASEB J. 2023 12;37(12): e23311
      Aggregation of α-synuclein (α-syn) into amyloid is the pathological hallmark of several neurodegenerative disorders, including Parkinson disease, dementia with Lewy bodies, and multiple system atrophy. It is widely accepted that α-syn aggregation is associated with neurodegeneration, although the mechanisms are not yet fully understood. Therefore, the inhibition of α-syn aggregation is a potential therapeutic approach against these diseases. This study used the photocatalyst for α-syn photo-oxygenation, which selectively adds oxygen atoms to fibrils. Our findings demonstrate that photo-oxygenation using this photocatalyst successfully inhibits α-syn aggregation, particularly by reducing its seeding ability. Notably, we also discovered that photo-oxygenation of the histidine at the 50th residue in α-syn aggregates is responsible for the inhibitory effect. These findings indicate that photo-oxygenation of the histidine residue in α-syn is a potential therapeutic strategy for synucleinopathies.
    Keywords:  Parkinson disease; amyloid; neurodegenerative disease; photo-oxygenation; protein aggregation; synucleinopathies; α-synuclein
    DOI:  https://doi.org/10.1096/fj.202301533R
  4. Bioorg Med Chem. 2023 Nov 10. pii: S0968-0896(23)00377-2. [Epub ahead of print]96 117529
      This study focuses on the misfolding and aggregation of α-Syn as a central mechanism linking various pathological processes in PD. Maintaining α-Syn proteostasis through suitable inhibitors emerges as an effective approach to prevent PD. A more efficient strategy for PD treatment involves disintegrating neurotoxic oligomers and fibrils into normal functional α-Syn using inhibitors. To this end, a series of 4-arylidene curcumin derivatives were synthesized with a sheet-like conjugated skeleton and higher binding energies with α-Syn residues. Among these derivatives, three candidate compounds exhibited promising α-Syn aggregation inhibitory activities in vitro, with IC50 values as low as 0.61 μM. The inhibitory action extended throughout the entire aggregation process, stabilizing α-Syn proteostasis conformation and preventing β-sheets aggregation. Furthermore, the candidate compounds demonstrated effective disintegration capabilities against preformed α-Syn oligomers and fibrils. Initial mechanistic investigations indicated that the inhibitors may bind to a specific domain within the fibril, inducing fibril instability and subsequent collapse. This process resulted in the formation of a complex system of aggregates with smaller sizes and monomers. Overall, these findings provide valuable insights into the potential of 4-arylidene curcumin derivatives as therapeutic agents for targeting α-Syn aggregation in PD treatment.
    Keywords:  4-Arylidene curcumin derivatives; Disaggregation of α-Syn fibril; Mechanism; Synthesis; α-Syn aggregation inhibito
    DOI:  https://doi.org/10.1016/j.bmc.2023.117529
  5. bioRxiv. 2023 Oct 24. pii: 2023.10.24.563685. [Epub ahead of print]
      Neurodegenerative protein conformational diseases (PCDs), such as Alzheimer's, Parkinson's, and Huntington's, are a leading cause of death and disability worldwide and have no known cures or effective treatments. Emerging evidence suggests a role for the gut microbiota in the pathogenesis of neurodegenerative PCDs; however, the influence of specific bacteria on the culprit proteins associated with each of these diseases remains elusive, primarily due to the complexity of the microbiota. In the present study, we employed a single-strain screening approach to identify human bacterial isolates that enhance or suppress the aggregation of culprit proteins and the associated toxicity in Caenorhabditis elegans expressing Aβ 1-42 , α-synuclein, and polyglutamine tracts. Here, we reveal the first comprehensive analysis of the human microbiome for its effect on proteins associated with neurodegenerative diseases. Our results suggest that bacteria affect the aggregation of metastable proteins by modulating host proteostasis rather than selectively targeting specific disease-associated proteins. These results reveal bacteria that potentially influence the pathogenesis of PCDs and open new promising prevention and treatment opportunities by altering the abundance of beneficial and detrimental microbes.
    DOI:  https://doi.org/10.1101/2023.10.24.563685
  6. Sci Adv. 2023 Nov 17. 9(46): eadi7359
      Protein misfolding and aggregation is a characteristic of many neurodegenerative disorders, including Alzheimer's and Parkinson's disease. The oligomers generated during aggregation are likely involved in disease pathogenesis and present promising biomarker candidates. However, owing to their small size and low concentration, specific tools to quantify and characterize aggregates in complex biological samples are still lacking. Here, we present single-molecule two-color aggregate pulldown (STAPull), which overcomes this challenge by probing immobilized proteins using orthogonally labeled detection antibodies. By analyzing colocalized signals, we can eliminate monomeric protein and specifically quantify aggregated proteins. Using the aggregation-prone alpha-synuclein protein as a model, we demonstrate that this approach can specifically detect aggregates with a limit of detection of 5 picomolar. Furthermore, we show that STAPull can be used in a range of samples, including human biofluids. STAPull is applicable to protein aggregates from a variety of disorders and will aid in the identification of biomarkers that are crucial in the effort to diagnose these diseases.
    DOI:  https://doi.org/10.1126/sciadv.adi7359
  7. bioRxiv. 2023 Oct 31. pii: 2023.10.26.564235. [Epub ahead of print]
      TDP-43, an essential RNA/DNA-binding protein, is central to the pathology of neurodegenerative diseases such as Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Pathological mislocalization and aggregation of TDP-43 disrupts RNA splicing, mRNA stability, and mRNA transport, thereby impairing neuronal function and survival. The formation of amyloid-like TDP-43 filaments is largely facilitated by the destabilization of an α-helical segment within the disordered C-terminal region. In this study, we hypothesized that preventing the destabilization of the α-helical domain could potentially halt the growth of these pathological filaments. To explore this, we utilized a range of in-silico techniques to design and evaluate peptide-based therapeutics. Various pathological TDP-43 amyloid-like filament crystal structures were selected for their potential to inhibit the binding of additional TDP-43 monomers to the growing filaments. Our computational approaches included biophysical and secondary structure property prediction, molecular docking, 3D structure prediction, and molecular dynamics simulations. Through these techniques, we were able to assess the structure, stability, and binding affinity of these peptides in relation to pathological TDP-43 filaments. The results of our in-silico analyses identified a selection of promising peptides, which displayed a stable α-helical structure, exhibited an increased number of intramolecular hydrogen bonds within the helical domain, and demonstrated high binding affinities for pathological TDP-43 amyloid-like filaments. Additionally, molecular dynamics simulations provided further support for the stability of these peptides, as they exhibited lower root mean square deviations in their helical propensity over 100ns. These findings establish α-helical propensity peptides as potential lead molecules for the development of novel therapeutics against TDP-43 aggregation. This structure-based computational approach for rational design of peptide inhibitors opens a new direction in the search for effective interventions for ALS, FTD, and other related neurodegenerative diseases. The peptides identified as the most promising candidates in this study are currently subject to further testing and validation through both in vitro and in vivo experiments.
    DOI:  https://doi.org/10.1101/2023.10.26.564235
  8. J Am Chem Soc. 2023 Nov 16.
      Misfolded protein oligomers are of central importance in both the diagnosis and treatment of Alzheimer's and Parkinson's diseases. However, accurate high-throughput methods to detect and quantify oligomer populations are still needed. We present here a single-molecule approach for the detection and quantification of oligomeric species. The approach is based on the use of solid-state nanopores and multiplexed DNA barcoding to identify and characterize oligomers from multiple samples. We study α-synuclein oligomers in the presence of several small-molecule inhibitors of α-synuclein aggregation as an illustration of the potential applicability of this method to the development of diagnostic and therapeutic methods for Parkinson's disease.
    DOI:  https://doi.org/10.1021/jacs.3c09335
  9. Biochim Biophys Acta Mol Cell Res. 2023 Nov 13. pii: S0167-4889(23)00204-5. [Epub ahead of print] 119631
      Efficient protein synthesis is a basic requirement of our cells to replace the old or defective proteins from the intrinsic crowded biomolecular environment. The interconnection among synthesis, folding, and degradation of proteins represents central paradigm to proteostasis. Failure of protein quality control (PQC) mechanisms results in the disturbance and inadequate functions of proteome. The consequent misfolded protein accumulation can form the basis of neurodegeneration onset and largely represents imperfect aging. Understanding how cells improve the function of deregulated PQC mechanisms to establish and maintain proteostasis against the unwanted sequestration of normal proteins with misfolded proteinaceous inclusions is a major challenge. Here we show that treatment of Lanosterol, a cholesterol synthesis pathway intermediate, induces Proteasome proteolytic activities and, therefore, supports the PQC mechanism for the elimination of intracellular aberrant proteins. The exposure of Lanosterol not only promotes Proteasome catalytic functions but also elevates the removal of both bona fide and neurodegenerative diseases associated toxic proteins. Our current study suggests that increasing Proteasome functions with the help of small molecules such as Lanosterol could serve as a cytoprotective therapeutic approach against abnormal protein accumulation. Cumulatively, based on findings in this study, we can understand the critical importance of small molecules and their potential therapeutic influence in re-establishing disturbed proteostasis linked with neurodegeneration.
    Keywords:  Diseases; Lanosterol; Misfolded proteins; Neurodegeneration; Proteasome
    DOI:  https://doi.org/10.1016/j.bbamcr.2023.119631
  10. J Chem Inf Model. 2023 Nov 14.
      The aggregation of α-synuclein is implicated in a number of neurodegenerative diseases, such as Parkinson's and Multiple System Atrophy, but the role of these aggregates in disease development is not clear. One possible mechanism of cytotoxicity is the disturbance or permeabilization of cell membranes by certain types of oligomers. However, no high-resolution structure of such membrane-embedded complexes has ever been determined. Here we construct and evaluate putative transmembrane β-barrels formed by this protein. Examination of the α-synuclein sequence reveals two regions that could form membrane-embedded β-hairpins: 64-92 (the NAC), and 35-56, which harbors many familial Parkinson's mutations. The stability of β-barrels formed by these hairpins is examined first in implicit membrane pores and then by multimicrosecond all-atom simulations. We find that a NAC region barrel remains stably inserted and hydrated for at least 10 μs. A 35-56 barrel remains stably inserted in the membrane but dehydrates and collapses if all His50 are neutral or if His50 is replaced by Q. If half of the His50 are doubly protonated, the barrel takes an oval shape but remains hydrated for at least 10 μs. Possible implications of these findings for α-synuclein pathology are discussed.
    DOI:  https://doi.org/10.1021/acs.jcim.3c00997
  11. J Inorg Biochem. 2023 Nov 07. pii: S0162-0134(23)00306-9. [Epub ahead of print]250 112424
      Alzheimer's disease (AD) is a devastating neurological disorder where one of the primary pathological hallmarks are aggregate deposits of the peptide amyloid-beta (Aβ). Although the Food and Drug Administration (FDA) has recently approved therapeutics that specifically target Aβ, resulting in the removal of these deposits, the associated costs of such treatments create a need for effective, yet cheaper, alternatives. Metal-based compounds are propitious therapeutic candidates as they exploit the metal-binding properties of Aβ, forming stable interactions with the peptide, thereby limiting its aggregation and toxicity. Previously, ruthenium-based complexes have shown a strong ability to modulate the aggregation and cytotoxicity of Aβ, where the incorporation of a primary amine on the coordinated heterocyclic ligand gave the greatest activity. To determine the importance of the location of the primary amine on the pyridine ligand, thereby establishing structure-activity relationships (SAR), four complexes (RuP1-4) were prepared and evaluated for their ability to coordinate and subsequently modulate the aggregation and cytotoxicity of Aβ. Coordination to Aβ was determined using three complementary spectroscopic methods: UV-Vis, 1H NMR, and circular dichroism (CD). Similarly, the impact of the complexes on Aβ aggregation was evaluated using three sequential methods of turbidity, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Overall, the location of the primary amine on the pyridine ligand did affect the resultant anti-Aβ performance, with the 2-aminopyridine complex (RuP2) being the most active. This SAR will provide another guiding principle in the design of future metal-based anti-Aβ complexes.
    Keywords:  Alzheimer's disease; Amyloid-beta peptide; Ruthenium therapeutics; Structure-activity relationships
    DOI:  https://doi.org/10.1016/j.jinorgbio.2023.112424
  12. Phys Chem Chem Phys. 2023 Nov 15.
      Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common neurodegenerative diseases with markedly different pathological features of β-amyloid (Aβ) plaques and α-synuclein (αS) Lewy bodies (LBs), respectively. However, clinical overlaps in symptoms and pathologies between AD and PD are commonly observed caused by the cross-interaction between Aβ and αS. To uncover the molecular mechanisms behind their overlapping symptoms and pathologies, we computationally investigated the impact of αS on an Aβ monomer and dimerization using atomistic discrete molecular dynamics simulations (DMD). Our results revealed that αS could directly interact with Aβ monomers and dimers, thus forming β-sheet-rich oligomers, including potentially toxic β-barrel intermediates. The binding hotspot involved the second half of the N-terminal domain and NAC region in αS, along with residues 10-21 and 31-42 in Aβ. In their hetero-complex, the binding hotspot primarily assumed a β-sheet core buried inside, which was dynamically shielded by the highly charged, amyloid-resistant C-terminus of αS. Because the amyloid prion region was the same as the binding hotspot being buried, their fibrillization may be delayed, causing the toxic oligomers to increase. This study sheds light on the intricate relationship between Aβ and αS and provides insights into the overlapping pathology of AD and PD.
    DOI:  https://doi.org/10.1039/d3cp04138g
  13. ACS Chem Neurosci. 2023 Nov 16.
      This study reports the unusual ability of small molecules N-phenylbenzofuran-2-carboxamide (7a) and N-phenylbenzo[b]thiophene-2-carboxamide (7b) to promote and accelerate Aβ42 aggregation. In the in vitro aggregation kinetic assays, 7a was able to demonstrate rapid increases in Aβ42 fibrillogenesis ranging from 1.5- to 4.7-fold when tested at 1, 5, 10, and 25 μM compared to Aβ42-alone control. Similarly, compound 7b also exhibited 2.9- to 4.3-fold increases in Aβ42 fibrillogenesis at the concentration range tested. Electron microscopy studies at 1, 5, 10, and 25 μM also demonstrate the ability of compounds 7a and 7b to promote and accelerate Aβ42 aggregation with the formation of long, elongated fibril structures. Both 7a and 7b were not toxic to HT22 hippocampal neuronal cells and strikingly were able to prevent Aβ42-induced cytotoxicity in HT22 hippocampal neuronal cells (cell viability ∼74%) compared to the Aβ42-treated group (cell viability ∼20%). Fluorescence imaging studies using BioTracker 490 green, Hoeschst 33342, and the amyloid binding dye ProteoStat further demonstrate the ability of 7a and 7b to promote Aβ42 fibrillogenesis and prevent Aβ42-induced cytotoxicity to HT22 hippocampal neuronal cells. Computational modeling studies suggest that both 7a and 7b can interact with the Aβ42 oligomer and pentamers and have the potential to modulate the self-assembly pathways. The 8-anilino-1-naphthalenesulfonic acid (ANS) dye binding assay also demonstrates the ability of 7a and 7b to expose the hydrophobic surface of Aβ42 to the solvent surface that promotes self-assembly and rapid fibrillogenesis. These studies demonstrate the unique ability of small molecules 7a and 7b to alter the self-assembly and misfolding pathways of Aβ42 by promoting the formation of nontoxic aggregates. These findings have direct implications in the discovery and development of novel small-molecule-based chemical and pharmacological tools to study the Aβ42 aggregation mechanisms, and in the design of novel antiamyloid therapies to treat Alzheimer's disease.
    Keywords:  aggregation kinetics; beta-amyloid; cell viability; fibrillogenesis; fluorescence imaging; molecular docking; small molecules; transmission electron microscopy
    DOI:  https://doi.org/10.1021/acschemneuro.3c00576
  14. Mol Neurodegener. 2023 Nov 16. 18(1): 87
       BACKGROUND: Progranulin (PGRN) is a lysosomal glycoprotein implicated in various neurodegenerative diseases, including frontotemporal dementia and neuronal ceroid lipofuscinosis. Over 70 mutations discovered in the GRN gene all result in reduced expression of the PGRN protein. Genetic and functional studies point toward a regulatory role for PGRN in lysosome functions. However, the detailed molecular function of PGRN within lysosomes and the impact of PGRN deficiency on lysosomes remain unclear.
    METHODS: We developed multifaceted proteomic techniques to characterize the dynamic lysosomal biology in living human neurons and fixed mouse brain tissues. Using lysosome proximity labeling and immuno-purification of intact lysosomes, we characterized lysosome compositions and interactome in both human induced pluripotent stem cell (iPSC)-derived glutamatergic neurons (i3Neurons) and mouse brains. Using dynamic stable isotope labeling by amino acids in cell culture (dSILAC) proteomics, we measured global protein half-lives in human i3Neurons for the first time.
    RESULTS: Leveraging the multi-modal proteomics and live-cell imaging techniques, we comprehensively characterized how PGRN deficiency changes the molecular and functional landscape of neuronal lysosomes. We found that PGRN loss impairs the lysosome's degradative capacity with increased levels of v-ATPase subunits on the lysosome membrane, increased hydrolases within the lysosome, altered protein regulations related to lysosomal transport, and elevated lysosomal pH. Consistent with impairments in lysosomal function, GRN-null i3Neurons and frontotemporal dementia patient-derived i3Neurons carrying GRN mutation showed pronounced alterations in protein turnover, such as cathepsins and proteins related to supramolecular polymerization and inherited neurodegenerative diseases.
    CONCLUSION: This study suggested PGRN as a critical regulator of lysosomal pH and degradative capacity, which influences global proteostasis in neurons. Beyond the study of progranulin deficiency, these newly developed proteomic methods in neurons and brain tissues provided useful tools and data resources for the field to study the highly dynamic neuronal lysosome biology.
    Keywords:  Frontotemporal dementia; Half-life; Lysosome; Neuron; PGRN; Progranulin; Proteomics; Turnover; dSILAC; iPSC
    DOI:  https://doi.org/10.1186/s13024-023-00673-w