bims-proned Biomed News
on Proteostasis in neurodegeneration
Issue of 2023–10–08
eleven papers selected by
Verena Kohler, Umeå University



  1. Biochim Biophys Acta Proteins Proteom. 2023 Aug 04. pii: S1570-9639(23)00057-2. [Epub ahead of print] 140943
      Parkinson's Disease (PD) is strongly linked to the aggregation of the protein α-synuclein (α-syn), an intrinsically disordered protein. However, strategies to combat PD by targeting the aggregation of α-syn are challenged by the multiple types of aggregates formed both in vivo and in vitro, the potential influence of chemical modifications and the as yet unresolved question of which aggregate types (oligomeric or fibrillar) are most cytotoxic. Here I briefly review the social history of α-syn, the many efforts to raise antibodies against α-syn and the disappointing results of clinical trials based on such antibodies. Ultimately a thorough understanding of the molecular and mechanistic properties of mAbs towards aggregated species of α-syn is an essential prerequisite for any clinical trial, but this is missing in most cases. I highlight new microfluidic techniques which may address this need and call for a more concerted effort to standardize antibody studies as the basis to allow us to link molecular insights to clinical efficacy.
    Keywords:  Antibodies; Microfluidics; Oligomers, fibrils; Parkinson's disease; α-Synuclein
    DOI:  https://doi.org/10.1016/j.bbapap.2023.140943
  2. FEBS J. 2023 Oct 03.
      Protein aggregation is a biological phenomenon caused by the accumulation of misfolded proteins. Amyloid beta (Aβ) peptides are derived from the cleavage of a larger membrane protein molecule and accumulate to form plaques extracellularly. According to the amyloid hypothesis, accumulation of Aβ aggregates in the brain is primarily responsible for the pathogenesis of Alzheimer's disease (AD). Therefore, the disassembly of Aβ aggregates may provide opportunities for alleviating or treating AD. Here, we show that the novel protein targeting machinery from chloroplast, chloroplast signal recognition particle 43 (cpSRP43), is an ATP-independent membrane protein chaperone that can both prevent and reverse Aβ aggregation effectively. Using of Thioflavin T (ThT) dye, we obtained the aggregation kinetics of Aβ aggregation and determined that the chaperone prevents Aβ aggregation in a concentration-dependent manner. Size exclusion chromatography and sedimentation assays showed that 10-fold excess of cpSRP43 can keep Aβ in the soluble monomeric form. Electron microscopy showed that the fibril structure was disrupted in the presence of this chaperone. Importantly, cpSRP43 utilizes the binding energy to actively remodel the preformed Aβ aggregates without assistance by a co-chaperone and ATP, emphasizing its unique function among protein chaperones. Moreover, when sodium chloride (NaCl) concentration is higher than 25 mM, the Aβ aggregation rate increases drastically to form tightly-associated aggregates and generate more oligomers. Our results demonstrate that the presence of cpSRP43 and low NaCl levels inhibit or retard Aβ peptide aggregation, potentially opening new avenues to strategically develop an effective treatment for AD.
    Keywords:  Alzheimer's disease; Molecular chaperone; amyloid beta; protein aggregation and disaggregation; protein misfolding
    DOI:  https://doi.org/10.1111/febs.16967
  3. Front Neurosci. 2023 ;17 1250532
      Parkinson's disease (PD) is the second most common neurodegenerative disease in the world, and alpha-synuclein (α-syn) abnormal aggregate and mitochondrial dysfunction play a crucial role in its pathological development. Recent studies have revealed that proteins can form condensates through liquid-liquid phase separation (LLPS), and LLPS has been found to be widely present in α-syn aberrant aggregate and mitophagy-related protein physiological processes. This review summarizes the occurrence of α-syn LLPS and its influencing factors, introduces the production and transformation of the related protein LLPS during PINK1-Parkin-mediated mitophagy, hoping to provide new ideas and methods for the study of PD pathology.
    Keywords:  PINK1-Parkin; Parkinson’s disease; alpha-synuclein; liquid-liquid phase separation; mitophagy
    DOI:  https://doi.org/10.3389/fnins.2023.1250532
  4. J Biol Chem. 2023 Oct 03. pii: S0021-9258(23)02345-1. [Epub ahead of print] 105317
      The DNAJB6 chaperone inhibits fibril formation of aggregation-prone client peptides through interaction with aggregated and oligomeric forms of the amyloid peptides. Here, we studied the role of its C-terminal domain (CTD) using constructs comprising either the entire CTD or the first two or all four of the CTD β-strands grafted onto a scaffold protein. Each construct was expressed as wild-type and as a variant with alanines replacing five highly conserved and functionally important serine and threonine residues in the first β-strand. We investigated the stability, oligomerization, anti-amyloid activity, and affinity for amyloid-β (Aβ42) species using optical spectroscopy, native mass spectrometry, chemical crosslinking and surface plasmon resonance technology. While DNAJB6 forms large and polydisperse oligomers, CTD was found to form only monomers, dimers and tetramers of low affinity. Kinetic analyses showed a shift in inhibition mechanism. Whereas full-length DNAJB6 activity is dependent on the serine and threonine residues and efficiently inhibits primary and secondary nucleation, all CTD constructs inhibit secondary nucleation only, independently of the serine and threonine residues, although their dimerization and thermal stabilities are reduced by alanine substitution. While the full-length DNAJB6 inhibition of primary nucleation is related to its propensity to form co-aggregates with Aβ, the CTD constructs instead bind to Aβ42 fibrils, which affects the nucleation events at the fibril surface. The retardation of secondary nucleation by DNAJB6 can thus be ascribed to the first two β-strands of its CTD, whereas the inhibition of primary nucleation is dependent on the entire protein or regions outside the CTD.
    Keywords:  Amyloid-beta (Aβ); Neurodegeneration; Protein aggregation; Protein engineering; Self-assembly; chaperone DnaJ (DnaJ)
    DOI:  https://doi.org/10.1016/j.jbc.2023.105317
  5. RSC Chem Biol. 2023 Oct 04. 4(10): 754-759
      The aggregation of incompletely or incorrectly folded proteins is implicated in diseases including Alzheimer's, cataracts, and other maladies. Natural systems express protein chaperones to prevent or even reverse harmful protein aggregation. Synthetic chaperone-like systems have sought to mimic the action of their biological counterparts but typically require substantial optimization and high concentrations to be functional, or lack programmability that would enable the targeting of specific protein substrates. Here we report a series of amphiphilic dendrons that undergo assembly and inhibit the aggregation of fragment 16-22 amyloid β protein (Aβ16-22). We show that monodisperse dendrons with hydrophilic tetraethylene glycol chains and a hydrophobic core based on naphthyl and benzyl ethers undergo supramolecular assembly in aqueous solutions to form sphere-like particles. The solubility of these dendrons and their assemblies is tuned by varying the relative sizes of their hydrophilic and hydrophobic regions. Two water-soluble dendrons are discovered and shown, via fluorescence experiments with rhodamine 6G, to generate a hydrophobic environment. Furthermore, we demonstrate that sub-stoichiometric concentrations of these amphiphilic dendrons stabilize Aβ16-22 peptide with respect to aggregation, mimicking the activity of holdase chaperones. Our results highlight the potential of these amphiphilic molecules as the basis for a novel approach to artificial chaperones that may address many of the challenges associated with existing synthetic chaperone mimics.
    DOI:  https://doi.org/10.1039/d3cb00086a
  6. Anal Chem. 2023 Oct 02.
      The formation of soluble α-synuclein (α-syn) and amyloid-β (Aβ) aggregates is associated with the development of Parkinson's disease (PD). Current methods mainly focus on the measurement of the aggregate concentration and are unable to determine their heterogeneous size and shape, which potentially also change during the development of PD due to increased protein aggregation. In this work, we introduce aptamer-assisted single-molecule pull-down (APSiMPull) combined with super-resolution fluorescence imaging of α-syn and Aβ aggregates in human serum from early PD patients and age-matched controls. Our diffraction-limited imaging results indicate that the proportion of α-syn aggregates (α-syn/(α-syn+Aβ)) can be used to distinguish PD and control groups with an area under the curve (AUC) of 0.85. Further, super resolution fluorescence imaging reveals that PD serums have a higher portion of larger and rounder α-syn aggregates than controls. Little difference was observed for Aβ aggregates. Combining these two metrics, we constructed a new biomarker and achieved an AUC of 0.90. The combination of the aggregate number and morphology provides a new approach to early PD diagnosis.
    DOI:  https://doi.org/10.1021/acs.analchem.3c02515
  7. Nat Aging. 2023 Oct 02.
      In humans, aggregation of polyglutamine repeat (polyQ) proteins causes disorders such as Huntington's disease. Although plants express hundreds of polyQ-containing proteins, no pathologies arising from polyQ aggregation have been reported. To investigate this phenomenon, we expressed an aggregation-prone fragment of human huntingtin (HTT) with an expanded polyQ stretch (Q69) in Arabidopsis thaliana plants. In contrast to animal models, we find that Arabidopsis sp. suppresses Q69 aggregation through chloroplast proteostasis. Inhibition of chloroplast proteostasis diminishes the capacity of plants to prevent cytosolic Q69 aggregation. Moreover, endogenous polyQ-containing proteins also aggregate on chloroplast dysfunction. We find that Q69 interacts with the chloroplast stromal processing peptidase (SPP). Synthetic Arabidopsis SPP prevents polyQ-expanded HTT aggregation in human cells. Likewise, ectopic SPP expression in Caenorhabditis elegans reduces neuronal Q67 aggregation and subsequent neurotoxicity. Our findings suggest that synthetic plant proteins, such as SPP, hold therapeutic potential for polyQ disorders and other age-related diseases involving protein aggregation.
    DOI:  https://doi.org/10.1038/s43587-023-00502-1
  8. Brain Pathol. 2023 Oct 04. e13215
      TDP-43 aggregates (skeins and round inclusions [RIs]) are frequent histopathological features of amyotrophic lateral sclerosis (ALS). We have shown that diffuse punctate cytoplasmic staining (DPCS) is the earliest pathologic manifestation of TDP-43 in ALS, corresponding to nonfibrillar TDP-43 located in the rough endoplasmic reticulum. Previous in vitro studies have suggested that TDP-43 inclusions may be derived from stress granules (SGs). Therefore, we investigated the involvement of SGs in the formation of TDP-43 inclusions. Formalin-fixed spinal cords of six ALS patients with a disease duration of less than 1 year (short duration), eight patients with a disease duration of 2-5 years (standard duration), and five normal controls were subjected to histopathological examination using antibodies against an SG marker, HuR. In normal controls, the cytoplasm of anterior horn cells was diffusely HuR-positive. In short-duration and standard-duration ALS, the number of HuR-positive anterior horn cells was significantly decreased relative to the controls. DPCS and RIs were more frequent in short-duration ALS than in standard-duration ALS. The majority of DPCS areas and a small proportion of RIs, but not skeins, were positive for HuR. Immunoelectron microscopy showed that ribosome-like granular structures in DPCS areas and RIs were labeled with anti-HuR, whereas skeins were not. These findings suggest that colocalization of TDP-43 and SGs occurs at the early stage of TDP-43 aggregation.
    Keywords:  HuR; TDP-43 inclusions; amyotrophic lateral sclerosis; anterior horn cell; stress granule
    DOI:  https://doi.org/10.1111/bpa.13215
  9. Phys Chem Chem Phys. 2023 Oct 02.
      Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, the familial form (fALS) of which is often cognate to mutations in the antioxidant enzyme Cu/Zn superoxide dismutase 1 (SOD1) leading to misfolding and aggregation. Two small molecules, a tertiary amine pyrazolone (TAP) and a pyrano coumarin ferulate (PCF) were suggested to be ALS drug candidates following experimental observation of their ability to inhibit SOD1 protein misfolding and aggregation. The present work aims at computational investigation of these experimentally proposed drug candidates to gain insight into their mechanism of SOD1 misfolding and aggregation inhibition. On the basis of molecular docking, molecular dynamics simulation, MM-PBSA and per-residue energy decomposition analysis, we examined the specific interactions of TAP and PCF with three probable binding sites of SOD1, namely, dimeric interface cavity, W32 and, UMP binding sites. Results suggest that the binding of TAP at W32 and at UMP sites are least probable due to absence of any favorable interaction. The binding of TAP to dimeric cavity is also unstable due to strong unfavorable interactions. In case of PCF, binding at the UMP site is least probable while binding at dimeric cavity is accompanied by unfavorable interactions. PCF, however, exhibits stable binding with the W32 binding site of SOD1 by stabilizing the solvent accessible hydrophobic residues, which otherwise would have acted as contact points for aggregation. Thus the results imply that compound PCF functions as an inhibitior of SOD1 misfolding/aggregation through direct interaction with the protein SOD1 at the W32 binding site. However, TAP is likely to act as an inhibitor through a different mechanism rather than direct interaction with the protein SOD1. These results apart from reinforcing previous experimental findings, shed light on the probable mechanism of action of the proposed drug candidates.
    DOI:  https://doi.org/10.1039/d3cp03978a
  10. Front Mol Neurosci. 2023 ;16 1230436
      Our review seeks to elucidate the current state-of-the-art in studies of 70-kilodalton-weighed heat shock proteins (Hsp70) in neurodegenerative diseases (NDs). The family has already been shown to play a crucial role in pathological aggregation for a wide spectrum of brain pathologies. However, a slender boundary between a big body of fundamental data and its implementation has only recently been crossed. Currently, we are witnessing an anticipated advancement in the domain with dozens of studies published every month. In this review, we briefly summarize scattered results regarding the role of Hsp70 in the most common NDs including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). We also bridge translational studies and clinical trials to portray the output for medical practice. Available options to regulate Hsp70 activity in NDs are outlined, too.
    Keywords:  Alzheimer’s disease; Hsp70; amyotrophic lateral sclerosis; neurodegenerative diseases; neuropharmacology
    DOI:  https://doi.org/10.3389/fnmol.2023.1230436