bims-proned Biomed News
on Proteostasis in neurodegeneration
Issue of 2023‒07‒16
nineteen papers selected by
Verena Kohler



  1. EMBO J. 2023 Jul 11. e111719
      Aggregation of the RNA-binding protein TAR DNA-binding protein 43 (TDP-43) is the key neuropathological feature of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). In physiological conditions, TDP-43 is predominantly nuclear, forms oligomers, and is contained in biomolecular condensates assembled by liquid-liquid phase separation (LLPS). In disease, TDP-43 forms cytoplasmic or intranuclear inclusions. How TDP-43 transitions from physiological to pathological states remains poorly understood. Using a variety of cellular systems to express structure-based TDP-43 variants, including human neurons and cell lines with near-physiological expression levels, we show that oligomerization and RNA binding govern TDP-43 stability, splicing functionality, LLPS, and subcellular localization. Importantly, our data reveal that TDP-43 oligomerization is modulated by RNA binding. By mimicking the impaired proteasomal activity observed in ALS/FTLD patients, we found that monomeric TDP-43 forms inclusions in the cytoplasm, whereas its RNA binding-deficient counterpart aggregated in the nucleus. These differentially localized aggregates emerged via distinct pathways: LLPS-driven aggregation in the nucleus and aggresome-dependent inclusion formation in the cytoplasm. Therefore, our work unravels the origins of heterogeneous pathological species reminiscent of those occurring in TDP-43 proteinopathy patients.
    Keywords:  LLPS; RNA; TDP-43; aggregation; oligomerization
    DOI:  https://doi.org/10.15252/embj.2022111719
  2. Mol Neurobiol. 2023 Jul 14.
      Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND), is a progressive neurological disorder, characterised by the death of upper and lower motor neurons. The aetiology of ALS remains unknown, and treatment options are limited. Endogenous retroviruses (ERVs), specifically human endogenous retrovirus type K (HERV-K), have been proposed to be involved in the propagation of neurodegeneration in ALS. ERVs are genomic remnants of ancient viral infection events, with most being inactive and not retaining the capacity to encode a fully infectious virus. However, some ERVs retain the ability to be activated and transcribed, and ERV transcripts have been found to be elevated within the brain tissue of MND patients. A hallmark of ALS pathology is altered localisation of the transactive response (TAR) DNA binding protein 43 kDa (TDP-43), which is normally found within the nucleus of neuronal and glial cells and is involved in RNA regulation. In ALS, TDP-43 aggregates within the cytoplasm and facilitates neurodegeneration. The involvement of ERVs in ALS pathology is thought to occur through TDP-43 and neuroinflammatory mediators. In this review, the proposed involvement of TDP-43, HERV-K and immune regulators on the onset and progression of ALS will be discussed. Furthermore, the evidence supporting a therapy based on targeting ERVs in ALS will be reviewed.
    Keywords:  Amyotrophic lateral sclerosis; Antiretroviral therapy; Endogenous retrovirus; HERV-K neuroinflammation; Motor neuron disease; TDP-43; Triumeq
    DOI:  https://doi.org/10.1007/s12035-023-03472-y
  3. Dev Growth Differ. 2023 Jul 15.
      Spinal motor neurons (SMNs) are the primary target of degeneration in amyotrophic lateral sclerosis (ALS). Degenerating motor neurons accumulate cytoplasmic TAR DNA-binding protein 43 (TDP-43) aggregates in most ALS cases. This SMN pathology can occur without mutation in the coding sequence of the TDP-43-encoding gene, TARDBP. Whether and how wild-type TDP-43 drives pathological changes in SMNs in vivo remain largely unexplored. In this study, we develop a two-photon calcium imaging setup in which tactile-evoked neural responses of motor neurons in the brainstem and spinal cord can be monitored using the calcium indicator GCaMP. We devise a piezo-assisted tactile stimulator that reproducibly evokes a brainstem descending neuron upon tactile stimulation of the head. A direct comparison between caudal primary motor neurons (CaPs) with or without TDP-43 overexpression in contiguous spinal segments demonstrates that CaPs overexpressing TDP-43 display attenuated Ca2+ transients during fictive escape locomotion evoked by the tactile stimulation. These results show that excessive amounts of TDP-43 protein reduce the neuronal excitability of SMNs and potentially contribute to asymptomatic pathological lesions of SMNs and movement disorders in patients with ALS. This article is protected by copyright. All rights reserved.
    Keywords:  ALS; Spinal motor neuron; TDP-43; calcium imaging; locomotion
    DOI:  https://doi.org/10.1111/dgd.12879
  4. Front Neurosci. 2023 ;17 1236518
      
    Keywords:  Alzheimer's disease; Parkinson's disease; Tau; chaperone; huntingtin (HTT); prion protein; protein aggregation; synuclein
    DOI:  https://doi.org/10.3389/fnins.2023.1236518
  5. Mol Neurobiol. 2023 Jul 10.
      Proteasomal degradation of intrinsically disordered proteins, such as tau, is a critical component of proteostasis in both aging and neurodegenerative diseases. In this study, we investigated proteasomal activation by MK886 (MK). We previously identified MK as a lead compound capable of modulating tau oligomerization in a cellular FRET assay and rescuing P301L tau-induced cytotoxicity. We first confirmed robust proteasomal activation by MK using 20S proteasomal assays and a cellular proteasomal tau-GFP cleavage assay. We then show that MK treatment can significantly rescue tau-induced neurite pathology in differentiated SHSY5Y neurospheres. Due to this compelling result, we designed a series of seven MK analogs to determine if proteasomal activity is sensitive to structural permutations. Using the proteasome as the primary MOA, we examined tau aggregation, neurite outgrowth, inflammation, and autophagy assays to identify two essential substituents of MK that are required for compound activity: (1) removal of the N-chlorobenzyl group from MK negated both proteasomal and autophagic activity and reduced neurite outgrowth; and (2) removal of the indole-5-isopropyl group significantly improved neurite outgrowth and autophagy activity but reduced its anti-inflammatory capacity. Overall, our results suggest that the combination of proteasomal/autophagic stimulation and anti-inflammatory properties of MK and its derivatives can decrease tau-tau interactions and help rebalance dysfunctional proteostasis. Further development of MK to optimize its proteasomal, autophagic, and anti-inflammatory targets may lead to a novel therapeutic that would be beneficial in aging and neurodegenerative diseases.
    Keywords:  Drug discovery; FRET; Neurite outgrowth; Proteasome; Proteostasis; Tau
    DOI:  https://doi.org/10.1007/s12035-023-03417-5
  6. Int J Mol Sci. 2023 Jun 22. pii: 10499. [Epub ahead of print]24(13):
      Recent advanced studies in neurodegenerative diseases have revealed several links connecting autophagy and neurodegeneration. Autophagy is the major cellular degradation process for the removal of toxic protein aggregates responsible for neurodegenerative diseases. More than 30 autophagy-related proteins have been identified as directly participating in the autophagy process. Proteins regulating the process of autophagy are much more numerous and unknown. To address this, in our present study, we identified a novel regulator (ARL6IP5) of neuronal autophagy and showed that the level of ARL6IP5 decreases in the brain with age and in Parkinson's disease in mice and humans. Moreover, a cellular model of PD (Wild type and A53T mutant α-synuclein overexpression) has also shown decreased levels of ARL6IP5. ARL6IP5 overexpression reduces α-synuclein aggregate burden and improves cell survival in an A53T model of Parkinson's disease. Interestingly, detailed mechanistic studies revealed that ARL6IP5 is an autophagy inducer. ARL6IP5 enhances Rab1-dependent autophagosome initiation and elongation by stabilizing free ATG12. We report for the first time that α-synuclein downregulates ARL6IP5 to inhibit autophagy-dependent clearance of toxic aggregates that exacerbate neurodegeneration.
    Keywords:  ARL6IP5 (ADP-ribosylation-like factor 6 interacting protein 5); Parkinson’s disease (PD); SH-SY5Y cells; autophagy; neurodegeneration; α-synuclein
    DOI:  https://doi.org/10.3390/ijms241310499
  7. ACS Chem Neurosci. 2023 Jul 11.
      Mutations in the proline-rich domain (PRD) of annexin A11 are linked to amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease, and generate abundant neuronal A11 inclusions by an unknown mechanism. Here, we demonstrate that recombinant A11-PRD and its ALS-associated variants form liquidlike condensates that transform into β-sheet-rich amyloid fibrils. Surprisingly, these fibrils dissolved in the presence of S100A6, an A11 binding partner overexpressed in ALS. The ALS variants of A11-PRD showed longer fibrillization half-times and slower dissolution, even though their binding affinities for S100A6 were not significantly affected. These findings indicate a slower fibril-to-monomer exchange for these ALS variants, resulting in a decreased level of S100A6-mediated fibril dissolution. These ALS-A11 variants are thus more likely to remain aggregated despite their slower fibrillization.
    Keywords:  Intrinsically disordered regions; NMR; SPR; amyloids; neurodegenerative diseases; phase separation
    DOI:  https://doi.org/10.1021/acschemneuro.3c00169
  8. Life Sci. 2023 Jul 08. pii: S0024-3205(23)00555-6. [Epub ahead of print]328 121920
      Neuronal cells are highly functioning but also extremely stress-sensitive cells. By defending the neuronal cells against pathogenic insults, microglial cells, a unique cell type, act as the frontline cavalry in the central nervous system (CNS). Their remarkable and unique ability to self-renew independently after their creation is crucial for maintaining normal brain function and neuroprotection. They have a wide range of molecular sensors that help maintain CNS homeostasis during development and adulthood. Despite being the protector of the CNS, studies have revealed that persistent microglial activation may be the root cause of innumerable neurodegenerative illnesses, including Alzheimer's disease (AD), Parkinson's disease (PD), and Amyloid Lateral Sclerosis (ALS). From our vigorous review, we state that there is a possible interlinking between pathways of Endoplasmic reticulum (ER) stress response, inflammation, and oxidative stress resulting in dysregulation of the microglial population, directly influencing the accumulation of pro-inflammatory cytokines, complement factors, free radicals, and nitric oxides leading to cell death via apoptosis. Recent research uses the suppression of these three pathways as a therapeutic approach to prevent neuronal death. Hence, in this review, we have spotlighted the advancement in microglial studies, which focus on their molecular defenses against multiple stresses, and current therapeutic strategies indirectly targeting glial cells for neurodevelopmental diseases.
    Keywords:  ABI3; APOE; Inflammasomes; Natural compounds; Nrf2; RIDD pathway; TREM2
    DOI:  https://doi.org/10.1016/j.lfs.2023.121920
  9. Adv Protein Chem Struct Biol. 2023 ;pii: S1876-1623(23)00038-X. [Epub ahead of print]136 385-413
      Aging is a major risk factor for many age-associated disorders, including neurodegenerative diseases. Both mitochondrial dysfunction and proteostatic decline are well-recognized hallmarks of aging and age-related neurodegeneration. Despite a lack of therapies for neurodegenerative diseases, a number of interventions promoting mitochondrial integrity and protein homeostasis (proteostasis) have been shown to delay aging-associated neurodegeneration. For example, many antioxidant polysaccharides are shown to have pharmacological potentials in Alzheimer's, Parkinson's and Huntington's diseases through regulation of mitochondrial and proteostatic pathways, including oxidative stress and heat shock responses. However, how mitochondrial and proteostatic mechanisms work together to exert the antineurodegenerative effect of the polysaccharides remains largely unexplored. Interestingly, recent studies have provided a growing body of evidence to support the crosstalk between mitostatic and proteostatic networks as well as the impact of the crosstalk on neurodegeneration. Here we summarize the recent progress of antineurodegenerative polysaccharides with particular attention in the mitochondrial and proteostatic context and provide perspectives on their implications in the crosstalk along the mitochondria-proteostasis axis.
    Keywords:  Antioxidant; Autophagy-lysosome pathway; Mitochondria; Neurodegeneration; Polysaccharide; Proteostasis; Ubiquitin-proteasome system; Unfolded protein response
    DOI:  https://doi.org/10.1016/bs.apcsb.2023.02.017
  10. Nat Commun. 2023 07 11. 14(1): 4092
      Perturbed cellular protein homeostasis (proteostasis) and mitochondrial dysfunction play an important role in neurodegenerative diseases, however, the interplay between these two phenomena remains unclear. Mitochondrial dysfunction leads to a delay in mitochondrial protein import, causing accumulation of non-imported mitochondrial proteins in the cytosol and challenging proteostasis. Cells respond by increasing proteasome activity and molecular chaperones in yeast and C. elegans. Here, we demonstrate that in human cells mitochondrial dysfunction leads to the upregulation of a chaperone HSPB1 and, interestingly, an immunoproteasome-specific subunit PSMB9. Moreover, PSMB9 expression is dependent on the translation elongation factor EEF1A2. These mechanisms constitute a defense response to preserve cellular proteostasis under mitochondrial stress. Our findings define a mode of proteasomal activation through the change in proteasome composition driven by EEF1A2 and its spatial regulation, and are useful to formulate therapies to prevent neurodegenerative diseases.
    DOI:  https://doi.org/10.1038/s41467-023-39642-8
  11. Mol Neurobiol. 2023 Jul 14.
      The TAR-DNA binding protein (TDP43) is a nuclear protein whose cytoplasmic inclusions are hallmarks of Amyotrophic Lateral Sclerosis (ALS). Acute stress in cells causes TDP43 mobilization to the cytoplasm and its aggregation through different routes. Although acute stress elicits a strong phenotype, is far from recapitulating the years-long aggregation process. We applied different chronic stress protocols and described TDP43 aggregation in a human neuroblastoma cell line by combining solubility assays, thioflavin-based microscopy and flow cytometry. This approach allowed us to detect, for the first time to our knowledge in vitro, the formation of 25 kDa C-terminal fragment of TDP43, a pathogenic hallmark of ALS. Our results indicate that chronic stress, compared to the more common acute stress paradigm, better recapitulates the cell biology of TDP43 proteinopathies. Moreover, we optimized a protocol for the detection of bona fide prions in living cells, suggesting that TDP43 may form amyloids as a stress response.
    Keywords:  Amyotrophic Lateral Sclerosis; Chronic stress; Prion; TDP43; Thioflavin
    DOI:  https://doi.org/10.1007/s12035-023-03455-z
  12. J Neurochem. 2023 Jul 10.
      Small molecules are being explored intensively for their applications as therapeutic molecules in the management of metabolic and neurological disorders. The natural small molecules can inhibit protein aggregation and underlying cellular pathogenesis of neurodegenerative diseases involving multi-factorial mechanisms of action. Certain natural small molecular inhibitors of pathogenic protein aggregation are highly efficient and have shown promising therapeutic potential. In the present study, Shikonin (SHK), a natural plant-based naphthoquinone has been investigated for its aggregation inhibition activity against α-synuclein (α-syn) and the neuroprotective potential in Caenorhabditis elegans (C. elegans). SHK significantly inhibited aggregation of α-syn at sub-stochiometric concentrations, delayed the linear lag phase and growth kinetics of seeded and unseeded α-syn aggregation. The binding of SHK to the C-terminus of α-syn maintained α-helical and disordered secondary structures with reduced beta-sheet content and complexity of aggregates. Further, in C. elegans transgenic PD models, SHK significantly reduced α-syn aggregation, improved locomotor activity and prevented dopaminergic (DA) neuronal degeneration, indicating the neuroprotective role of SHK. The present study highlights the potential of natural small molecules in the prevention of protein aggregation that may further be explored for their therapeutic efficacy in the management of protein aggregation and neurodegenerative diseases.
    Keywords:   C. elegans ; Parkinson's disease; aggregation inhibition; protein aggregation; shikonin; α-synuclein
    DOI:  https://doi.org/10.1111/jnc.15907
  13. Nutrients. 2023 Jul 07. pii: 3059. [Epub ahead of print]15(13):
      Alzheimer's disease (AD) is the most common neurodegenerative disease illustrated by neuronal dysfunctions, leading to memory weaknesses and personality changes mostly in the aged population worldwide. The exact cause of AD is unclear, but numerous studies have addressed the involvement of oxidative stress (OS), induced by reactive oxygen species (ROS), to be one of the leading causes in developing AD. OS dysregulates the cellular homeostasis, causing abnormal protein and lipid metabolism. Nutrition plays a pivotal role in modulating the antioxidant system and decreases the neuronal ROS level, thus playing an important therapeutic role in neurodegenerative diseases, especially in AD. Hence, medicinal herbs and their extracts have received global attention as a commercial source of antioxidants Lupeol. Lupeol is a pentacyclic triterpenoid and has many biological functions. It is available in fruits, vegetables, and medicinal plants. It has shown effective antioxidant and anti-inflammatory properties, and higher blood-brain barrier permeability. Also, the binding and inhibitory potentials of Lupeol have been investigated and proved to be effective against certain receptor proteins and enzymes in AD studies by computational molecular docking approaches. Therefore, AD-related research has gained interest in investigating the therapeutic effects of Lupeol. However, despite its beneficial effects in AD, there is still a lack of research in Lupeol. Hence, we compiled in this analysis all preclinical research that looked at Lupeol as an antioxidant and anti-inflammatory agent for AD.
    Keywords:  Alzheimer’s disease (AD); Lupeol; antioxidant; neuroinflammation; oxidative stress (OS); reactive oxygen species (ROS)
    DOI:  https://doi.org/10.3390/nu15133059
  14. J Mater Chem B. 2023 Jul 11.
      Tauopathies are a class of neurodegenerative diseases resulting in cognitive dysfunction, executive dysfunction, and motor disturbance. The primary pathological feature of tauopathies is the presence of neurofibrillary tangles in the brain composed of tau protein aggregates. Moreover, tau aggregates can spread from neuron to neuron and lead to the propagation of tau pathology. Although numerous small molecules are known to inhibit tau aggregation and block tau cell-to-cell transmission, it is still challenging to use them for therapeutic applications due to poor specificity and low blood-brain barrier (BBB) penetration. Graphene nanoparticles were previously demonstrated to penetrate the BBB and are amenable to functionalization for targeted delivery. Moreover, these nanoscale biomimetic particles can self-assemble or assemble with various biomolecules including proteins. In this paper, we show that graphene quantum dots (GQDs), as graphene nanoparticles, block the seeding activity of tau fibrils by inhibiting the fibrillization of monomeric tau and triggering the disaggregation of tau filaments. This behavior is attributed to electrostatic and π-π stacking interactions of GQDs with tau. Overall, our studies indicate that GQDs with biomimetic properties can efficiently inhibit and disassemble pathological tau aggregates, and thus block tau transmission, which supports their future developments as a potential treatment for tauopathies.
    DOI:  https://doi.org/10.1039/d3tb00850a
  15. Biochim Biophys Acta Proteins Proteom. 2023 Jul 09. pii: S1570-9639(23)00046-8. [Epub ahead of print] 140932
      Human α-, β-, and γ-synuclein (syn) are natively unfolded proteins present in the brain. Deposition of aggregated α-syn in Lewy bodies is associated with Parkinson's disease (PD) and γ-syn is known to be involved in both neurodegeneration and breast cancer. At physiological pH, while α-syn has the highest propensity for fibrillation followed by γ-syn, β-syn does not form any fibrils. Fibril formation in these proteins could be modulated by protein structure stabilizing osmolytes such as trehalose which has an exceptional stabilizing effect for globular proteins. We present a comprehensive study of the effect of trehalose on the conformation, aggregation, and fibril morphology of α-, β-, and γ-syn proteins. Rather than stabilizing the intrinsically disordered state of the synucleins, trehalose accelerates the rate of fibril formation by forming aggregation-competent partially folded intermediate structures. Fibril morphologies are also strongly dependent on the concentration of trehalose with ≤ 0.4M favoring the formation of mature fibrils in α-, and γ-syn with no effect on the fibrillation of β-syn. At ≥ 0.8M, trehalose promotes the formation of smaller aggregates that are more cytotoxic. Live cell imaging of preformed aggregates of a labeled A90C α-syn shows their rapid internalization into neural cells which could be useful in reducing the load of aggregated species of α-syn. The findings throw light on the differential effect of trehalose on the conformation and aggregation of disordered synuclein proteins with respect to globular proteins and could help in understanding the effect of osmolytes on intrinsically disordered proteins under cellular stress conditions.
    Keywords:  Amyloid; Osmolytes; Parkinson's disease; Trehalose; α-Syn; β-Syn; γ-Syn
    DOI:  https://doi.org/10.1016/j.bbapap.2023.140932
  16. Adv Exp Med Biol. 2023 ;1415 263-267
      The formation of higher-order protein assemblies (commonly called protein aggregates) has long been associated with disease states, particularly in neurodegenerative disorders. Within the eye, protein aggregation has also been implicated in various retinal degenerative diseases ranging from retinitis pigmentosa (RP) to Malattia Leventinese/Doyne Honeycomb Retinal Dystrophy (ML/DHRD) to age-related macular degeneration (AMD). Yet, many essential cellular processes including transcription, translation, and the formation of non-membrane bound organelles require the formation of functional, non-pathologic protein aggregates to maintain cellular homeostasis. Thus, functional protein aggregates, also called condensates, likely play essential roles in maintaining normal retina function. However, currently, there is a critical gap in our knowledge: What proteins form higher-order assemblies under normal conditions within the retina and what function do these structures serve? Herein, we present data suggesting that protein aggregation is identifiable in multiple retinal layers of normal, healthy murine retina, and briefly discuss the potential contributions of aggregated proteins to normal retinal function, with a focus on the photoreceptor inner and outer segment.
    Keywords:  Amyloid; Condensate; Higher-order assembly; Protein aggregation; Retinal degeneration; Thioflavin T
    DOI:  https://doi.org/10.1007/978-3-031-27681-1_38
  17. ACS Chem Neurosci. 2023 Jul 13.
      Alzheimer's disease (AD) is one of the world's most pressing health crises. AD is an incurable disease affecting more than 6.5 million Americans, predominantly the elderly, and in its later stages, leads to memory loss, dementia, and death. Amyloid β (Aβ) protein aggregates have been one of the pathological hallmarks of AD since its initial characterization. The early stages of Aβ accumulation and aggregation involve the formation of oligomers, which are considered neurotoxic and play a key role in further aggregation into fibrils that eventually appear in the brain as amyloid plaques. We have recently shown by combining ion mobility mass spectrometry (IM-MS) and atomic force microscopy (AFM) that Aβ42 rapidly forms dodecamers (12-mers) as the terminal oligomeric state, and these dodecamers seed the early formation of Aβ42 protofibrils. The link between soluble oligomers and fibril formation is one of the essential aspects for understanding the root cause of the disease state and is critical to developing therapeutic interventions. Utilizing a joint pharmacophore space (JPS) method, potential drugs have been designed specifically for amyloid-related diseases. These small molecules were generated based on crucial chemical features necessary for target selectivity. In this paper, we utilize our combined IM-MS and AFM methods to investigate the impact of three second-generation JPS small-molecule inhibitors, AC0201, AC0202, and AC0203, on dodecamer as well as fibril formation in Aβ42. Our results indicate that AC0201 works well as an inhibitor and remodeler of both dodecamers and fibril formation, AC0203 behaves less efficiently, and AC0202 is ineffective.
    Keywords:  AFM; Alzheimer’s disease; Aβ42; IM-MS; joint pharmacophore space; small molecule; toxic oligomers
    DOI:  https://doi.org/10.1021/acschemneuro.3c00266
  18. Protein Sci. 2023 Jul 11. e4728
      Numerous age-linked diseases are rooted in protein misfolding; this has motivated the development of small molecules and therapeutic antibodies that target the aggregation of disease-linked proteins. Here we explore another approach: molecular chaperones with engineerable protein scaffolds such as the ankyrin repeat domain (ARD). We tested the ability of cpSRP43, a small, robust, ATP- and cofactor-independent plant chaperone built from an ARD, to antagonize disease-linked protein aggregation. cpSRP43 delays the aggregation of multiple proteins including the amyloid beta peptide (Aβ) associated with Alzheimer's disease and α-synuclein associated with Parkinson's disease. Kinetic modeling and biochemical analyses show that cpSRP43 targets early oligomers during Aβ aggregation, preventing their transition to a self-propagating nucleus on the fibril surface. Accordingly, cpSRP43 rescued neuronal cells from the toxicity of extracellular Aβ42 aggregates. The substrate-binding domain of cpSRP43, composed primarily of the ARD, is necessary and sufficient to prevent Aβ42 aggregation and to protect cells against Aβ42 toxicity. This work provides an example in which an ARD chaperone non-native to mammalian cells harbors anti-amyloidal activity, which may be exploited for bioengineering. This article is protected by copyright. All rights reserved.
    Keywords:  Amyloid β peptide; amyloid; ankyrin repeat proteins; chaperone; α-synuclein
    DOI:  https://doi.org/10.1002/pro.4728
  19. Front Cell Neurosci. 2023 ;17 1162363
      Microtubules are dynamic cytoskeletal structures involved in several cellular functions, such as intracellular trafficking, cell division and motility. More than other cell types, neurons rely on the proper functioning of microtubules to conduct their activities and achieve complex morphologies. Pathogenic variants in genes encoding for α and β-tubulins, the structural subunits of microtubules, give rise to a wide class of neurological disorders collectively known as "tubulinopathies" and mainly involving a wide and overlapping range of brain malformations resulting from defective neuronal proliferation, migration, differentiation and axon guidance. Although tubulin mutations have been classically linked to neurodevelopmental defects, growing evidence demonstrates that perturbations of tubulin functions and activities may also drive neurodegeneration. In this study, we causally link the previously unreported missense mutation p.I384N in TUBA1A, one of the neuron-specific α-tubulin isotype I, to a neurodegenerative disorder characterized by progressive spastic paraplegia and ataxia. We demonstrate that, in contrast to the p.R402H substitution, which is one of the most recurrent TUBA1A pathogenic variants associated to lissencephaly, the present mutation impairs TUBA1A stability, reducing the abundance of TUBA1A available in the cell and preventing its incorporation into microtubules. We also show that the isoleucine at position 384 is an amino acid residue, which is critical for α-tubulin stability, since the introduction of the p.I384N substitution in three different tubulin paralogs reduces their protein level and assembly into microtubules, increasing their propensity to aggregation. Moreover, we demonstrate that the inhibition of the proteasome degradative systems increases the protein levels of TUBA1A mutant, promoting the formation of tubulin aggregates that, as their size increases, coalesce into inclusions that precipitate within the insoluble cellular fraction. Overall, our data describe a novel pathogenic effect of p.I384N mutation that differs from the previously described substitutions in TUBA1A, and expand both phenotypic and mutational spectrum related to this gene.
    Keywords:  TUBA1A; gene; microtubule; mutation; neurodegeneration; tubulin; tubulinopathies
    DOI:  https://doi.org/10.3389/fncel.2023.1162363