Pharmaceutics. 2025 Jun 25. pii: 825. [Epub ahead of print]17(7):
Background: Organic anion transporter 3 (OAT3) in the kidney proximal tubule cells plays a critical role in renal clearance of numerous endogenous metabolites and exogenous drugs and toxins. In this study, we discovered that epidermal growth factor (EGF) regulates the expression and activity of OAT3 through palmitoylation, a novel mechanism that has never been described in the OAT field. Methods/Results: Our results showed that treatment of OAT3-expressing cells with EGF led to a ~40% increase in OAT3 expression and OAT3-mediated transport of estrone sulfate, a prototypical substrate for OAT3. EGF-stimulated OAT3 transport activity was abrogated by H-89, a protein kinase A (PKA) inhibitor, indicating that an EGF-PKA signaling pathway is involved in the regulation of OAT3. We also showed that treatment of OAT3-expressing cells with EGF resulted in an enhancement of OAT3 palmitoylation, a novel type of post-translational modification for OATs, and such an enhancement was blocked by H-89, suggesting that the EGF-PKA signaling pathway participated in the modulation of OAT3 palmitoylation. Palmitoylation was catalyzed by a group of palmitoyltransfereases, and we showed that OAT3 palmitoylation and expression were inhibited by 2-BP, a general inhibitor for palmitoyltransfereases. We also explored the relationship among EGF/PKA signaling, OAT palmitoylation, and OAT transport activity. We treated OAT3-expressing cells with EGF or Bt2-cAMP, a PKA activator, in the presence and absence of 2-BP, followed by the measurement of OAT3-mediated transport of estrone sulfate. We showed that both EGF- and Bt2-cAMP-stimulated OAT3 transport activity were abolished by 2-BP, suggesting that palmitoylation mediates the regulation of EGF/PKA on OAT3. Finally, we showed that osimertinib, an anti-cancer drug/EGFR inhibitor, blocked EGF-stimulated OAT3 transport activity. Conclusions: In summary, we provided the first evidence that palmitoylation transduces the EGF/PKA signaling pathway to the modulation of OAT3 expression and function. Our study also provided an important implication that during comorbidity therapies, EGFR inhibitor drugs could potentially decrease the transport activity of renal OAT3, which would subsequently alter the therapeutic efficacy and toxicity of many co-medications that are OAT3 substrates.
Keywords: epidermal growth factor; organic anion transporter 3; palmitoylation; protein kinase A; regulation; signaling pathway; transporter