J Proteomics. 2019 May 15. pii: S1874-3919(19)30153-8. [Epub ahead of print]203 103381
Endometrial receptivity is a limiting step in human reproduction. A disruption in the development of endometrial receptivity is responsible for recurrent implantation failures (RIF) of endometrial origin. To understand the molecular mechanisms behind the endometrial receptivity process, we used the isobaric tag for relative and absolute quantitation (iTRAQ) method to compare three different endometrial statuses: fertile women, intrauterine device (IUD) carriers, and RIF patients. Overall, iTRAQ allowed identified 1889 non-redundant proteins. Of these, 188 were differentially expressed proteins (DEP) (p-value < .05). Pairwise comparisons revealed 133 significant DEP in fertile vs. IUD carriers and 158 DEP in RIF vs. IUD carriers. However, no DEP were identified between fertile and RIF patients. Western blot validation of three DEP involved in endometrial receptivity (plastin 2, lactotransferrin, and lysozyme) confirmed our iTRAQ results. Moreover, functional KEGG enrichment revealed that complement and coagulation cascades and peroxisome were the two most significant pathways for the RIF vs. IUD comparison and ribosome and spliceosome for the fertile vs. IUD comparison, as possible important pathways involved in the endometrial receptivity acquisition. The lack of DEP between fertile and RIF patient endometria suggest that idiopathic RIF may not have an endometrial origin, with other as-yet-unknown factors involved. SIGNIFICANCE: A pilot study where a comparison of the endometrial protein profile from women with different endometrial receptive grade (fertile women, IUD carriers and RIF patients) during the same period of time (overlapping with the window of implantation) of a hormone replacement therapy was performed using a high-throughput proteomic technique. This approach lead us to better understand the molecular mechanisms undergoing endometrial receptivity, a time-limiting step to achieve pregnancy in humans. Moreover, the number of samples per group (10 Fertile women, 10 IUD carriers and 8 RIF patients) according to the methodology here employed (8plex iTRAQ), give more robustness to our results. Our findings confirm that an IUD introduces numerous changes in the endometrial protein profile when compared to fertile and RIF endometria, revealing some key proteins involved in endometrial receptivity. Finding no significant differences between Fertile and RIF patient endometria could suggest that other as-yet-unknown factors could be involved in the etiology of idiopathic RIF.
Keywords: Endometrial receptivity; Endometrium; Intrauterine device (IUD); Isobaric tags for relative and absolute quantification (iTRAQ); Recurrent implantation failure (RIF)