bims-proarb Biomed News
on Proteostasis in aging and regenerative biology
Issue of 2021‒07‒25
thirty-nine papers selected by
Rich Giadone
Harvard University


  1. Elife. 2021 Jul 20. pii: e65484. [Epub ahead of print]10
      Mitochondria are organelles with their own genomes, but they rely on the import of nuclear-encoded proteins that are translated by cytosolic ribosomes. Therefore, it is important to understand whether failures in the mitochondrial uptake of these nuclear-encoded proteins can cause proteotoxic stress and identify response mechanisms that may counteract it. Here, we report that upon impairments in mitochondrial protein import, high-risk precursor and immature forms of mitochondrial proteins form aberrant deposits in the cytosol. These deposits then cause further cytosolic accumulation and consequently aggregation of other mitochondrial proteins and disease-related proteins, including α-synuclein and amyloid β. This aggregation triggers a cytosolic protein homeostasis imbalance that is accompanied by specific molecular chaperone responses at both the transcriptomic and protein levels. Altogether, our results provide evidence that mitochondrial dysfunction, specifically protein import defects, contributes to impairments in protein homeostasis, thus revealing a possible molecular mechanism by which mitochondria are involved in neurodegenerative diseases.
    Keywords:  C. elegans; S. cerevisiae; biochemistry; chemical biology
    DOI:  https://doi.org/10.7554/eLife.65484
  2. J Clin Invest. 2021 Jul 20. pii: 143737. [Epub ahead of print]
      Skeletal muscle can undergo a regenerative process from injury or disease to preserve muscle mass and function, which is critically influenced by cellular stress responses. Inositol-requiring enzyme 1 (IRE1) is an ancient endoplasmic reticulum (ER) stress sensor and mediates a key branch of the unfolded protein response (UPR). In mammals, IRE1α is implicated in the homeostatic control of stress responses during tissue injury and regeneration. Here, we show that IRE1α serves as a myogenic regulator in skeletal muscle regeneration in response to injury and muscular dystrophy. We found in mice that IRE1α was activated during injury-induced muscle regeneration, and muscle-specific IRE1α ablation resulted in impaired regeneration upon cardiotoxin-induced injury. Gain- and loss-of-function studies in myocytes demonstrated that IRE1αacts to sustain both differentiation in myoblasts and hypertrophy in myotubes through regulated IRE1-dependent decay (RIDD) of mRNA encoding Myostatin, a key negative regulator of muscle repair and growth. Furthermore, in the mouse model of Duchenne muscular dystrophy (DMD), loss of muscle IRE1α resulted in augmented Myostatin signaling and exacerbated the dystrophic phenotypes. Thus, these results reveal a pivotal role for the RIDD output of IRE1α in muscle regeneration, offering new insight into potential therapeutic strategies for muscle loss diseases.
    Keywords:  Cell stress; Molecular pathology; Muscle Biology; Skeletal muscle
    DOI:  https://doi.org/10.1172/JCI143737
  3. EMBO J. 2021 Jul 20. e109001
      Mitochondrial activity is becoming an inherent aspect of cellular protein homeostasis (proteostasis). In this issue, Schlagowski et al (2021) report on the attractive notion that modulating mitochondrial protein import activity stimulates protein aggregate clearance in the cytosol, thereby affecting cytosolic proteostasis and its collapse observed in neurodegenerative diseases.
    DOI:  https://doi.org/10.15252/embj.2021109001
  4. Mol Psychiatry. 2021 Jul 20.
      Neurodegenerative diseases (NDs) are characterized by the aggregation of neurotoxic proteins in the central nervous system. Aberrant protein accumulation in NDs is largely caused by the dysfunction of the two principal protein catabolism pathways, the ubiquitin-proteasome system (UPS), and the autophagy-lysosomal pathway (ALP). The two protein quality control pathways are bridged by ubiquitination, a post-translational modification that can induce protein degradation via both the UPS and the ALP. Perturbed ubiquitination leads to the formation of toxic aggregates and inclusion bodies that are deleterious to neurons. Ubiquitination is promoted by a cascade of ubiquitinating enzymes and counter-regulated by deubiquitinating enzymes (DUBs). As fine-tuning regulators of ubiquitination and protein degradation, DUBs modulate the stability of ND-associated pathogenic proteins including amyloid β protein, Tau, and α-synuclein. Besides, DUBs also influence ND-associated mitophagy, protein secretion, and neuroinflammation. Given the various and critical functions of DUBs in NDs, DUBs may become potential therapeutic targets for NDs.
    DOI:  https://doi.org/10.1038/s41380-021-01233-8
  5. Trends Neurosci. 2021 Jul 01. pii: S0166-2236(21)00115-6. [Epub ahead of print]
      The aftermath of TBI is associated with an acute stress response and the accumulation of insoluble protein aggregates. Even after the symptoms of TBI are resolved, insidious molecular processes continue to develop, which often ultimately result in the development of age-associated neurodegenerative disorders. The precise molecular cascades that drive unhealthy brain aging are still largely unknown. In this review, we discuss proteostatic dysfunction as a converging mechanism contributing to accelerated brain aging after TBI. We examine evidence from human tissue and in vivo animal models, spanning both the aging and injury contexts. We conclude that TBI has a sustained debilitating effect on the proteostatic machinery, which may contribute to the accelerated pathological and cognitive hallmarks of aging that are observed following injury.
    Keywords:  cellular stress response; experimental models; heat shock response; therapeutics; ubiquitin-proteasome system; unfolded protein response
    DOI:  https://doi.org/10.1016/j.tins.2021.06.003
  6. Neurochem Int. 2021 Jul 20. pii: S0197-0186(21)00187-X. [Epub ahead of print] 105141
      Histone deacetylase 6 (HDAC6) has been shown to control major cell response pathways to the cytotoxic ubiquitinated aggregates in some protein aggregation diseases. However, it is not well known whether HDAC6 affects the aggregation process of α-synuclein (α-syn) in Parkinson's disease (PD). Previously, we demonstrated that HDAC6 inhibition exacerbated the nigrostriatal dopamine neurodegeneration and up-regulated α-syn oligomers in a heat shock protein 90 (Hsp90)-dependent manner in PD mouse model. Here, we further showed that HDAC6 overexpression partly improved the behavior deficits of the PD model and alleviated the nigrostriatal dopamine (DA) neurons injury. Furthermore, HDAC6 was found to regulate α-syn oligomers levels through activation of chaperone-mediated autophagy (CMA). During this process, Hsp90 deacetylation mediated the crosstalk between HDAC6 and lysosome-associated membrane protein type 2A. Liquid chromatography-tandem mass spectrometry and mutational analysis showed that acetylation status Hsp90 at the K489 site was a strong determinant for HDAC6-induced CMA activation, α-syn oligomers levels, and cell survival in the cell model of PD. Therefore, our findings uncovered the mechanism of HDAC6 in the PD model that HDAC6 regulated α-syn oligomers levels and DA neurons survival partly through modulating CMA, and Hsp90 deacetylation at the K489 site mediated the crosstalk between HDAC6 and CMA. HDAC6 and its downstream effectors appear as key modulators of the cytotoxic α-syn aggregates, which deserve further investigations to evaluate their values as potential therapeutic targets in PD.
    Keywords:  Chaperone-mediated autophagy; Heat shock protein 90; Histone deacetylase 6; Parkinson's disease; α-synuclein
    DOI:  https://doi.org/10.1016/j.neuint.2021.105141
  7. Front Pharmacol. 2021 ;12 671614
      Thyroid hormone is essential for hippocampal redox environment and neuronal viability in adulthood, where its deficiency causes hypothyroidism related to oxidative and endoplasmic reticulum stresses in the hippocampus, resulting in neuronal death. One option of treatment is antioxidants; however, they must be transported across the blood-brain barrier. Gallic acid is a polyphenol that meets these criteria. Thus, this study aimed to prove that the neuroprotective mechanism of GA is associated with the prevention of oxidative and endoplasmic reticulum stresses in the hippocampus of adult-onset hypothyroid rats. Male Wistar rats were divided into euthyroid (n = 20) and hypothyroid groups (n = 20). Thyroidectomy with parathyroid gland reimplementation caused hypothyroidism. Each group was subdivided into two: vehicle and 50 mg/kg/d of gallic acid. 3 weeks after thyroidectomy, six animals of each group were euthanized, and the hippocampus was dissected to evaluate oxidative and endoplasmic reticulum stress markers. The rest of the animals were euthanized after 4 weeks of treatment for histological analysis of the hippocampus. The results showed that hypothyroidism increased lipid peroxidation, reactive oxygen species, and nitrites; it also increased endoplasmic reticulum stress by activating the inositol-requiring enzyme-1α (IRE1α) pathway, the protein kinase RNA-like endoplasmic reticulum kinase (PERK) and activated transcription factor 6α (ATF6α) pathways associated with a proapoptotic state that culminates in hippocampal neuronal damage. Meanwhile, the hypothyroid rat treated with gallic acid reduced oxidative stress and increased endoplasmic reticulum-associated degradation (ERAD) through IRE1α and ATF6. Also, the gallic acid treatment prevented the Bax/BCl2 ratio from increasing and the overexpression of p53 and caspase 12. This treatment in hypothyroid animals was associated with the neuronal protection observed in the hippocampus. In conclusion, gallic acid prevents hypothyroidism-induced hippocampal damage associated with oxidative and endoplasmic reticulum stresses.
    Keywords:  endoplasmic reticulum stress; gallic acid; hippocampus; hypothyroidism; oxidative stress
    DOI:  https://doi.org/10.3389/fphar.2021.671614
  8. Stem Cell Res Ther. 2021 Jul 22. 12(1): 419
      BACKGROUND: During aging, hematopoietic stem cells (HSC) lose progressively both their self-renewal and differentiation potential. The precise molecular mechanisms of this phenomenon are not well established. To uncover the molecular events underlying this event, we have performed a bioinformatics analysis of 650 single-cell transcriptomes.METHODS: Single-cell transcriptome analyses of expression heterogeneity, cell cycle, and cell trajectory in human cell compartment enriched in hematopoietic stem cell compartment were investigated in the bone marrow according to the age of the donors. Identification of aging-related nodules was identified by weighted correlation network analysis in this primitive compartment.
    RESULTS: The analysis of single-cell transcriptomes allowed to uncover a major upregulation of EGR1 in human-aged lineage-CD34+CD38- cells which present cell cycle dysregulation with reduction of G2/M phase according to less expression of CCND2 during S phase. EGR1 upregulation in aging hematopoietic stem cells was found to be independent of cell cycle phases and gender. EGR1 expression trajectory in aged HSC highlighted a signature enriched in hematopoietic and immune disorders with the best induction of AP-1 complex and quiescence regulators such as EGR1, BTG2, JUNB, and NR41A. Sonic Hedgehog-related TMEM107 transmembrane molecule followed also EGR1 cell trajectory. EGR1-dependent gene weighted network analysis in human HSC-associated IER2 target protein-specific regulators of PP2A activity, IL1B, TNFSF10 ligands, and CD69, SELP membrane molecules in old HSC module with immune and leukemogenic signature. In contrast, for young HSC which were found with different cell cycle phase progression, its specific module highlighted upregulation of HIF1A hypoxic factor, PDE4B immune marker, DRAK2 (STK17B) T cell apoptosis regulator, and MYADM myeloid-associated marker.
    CONCLUSION: EGR1 was found to be connected to the aging of human HSC and highlighted a specific cell trajectory contributing to the dysregulation of an inflammatory and leukemia-related transcriptional program in aged human HSCs. EGR1 and its program were found to be connected to the aging of human HSC with dissociation of quiescence property and cell cycle phase progression in this primitive hematopoietic compartment.
    Keywords:  Aging; EGR1; Hematopoietic stem cell; Inflammation; Leukemia; Single cell
    DOI:  https://doi.org/10.1186/s13287-021-02498-0
  9. STAR Protoc. 2021 Sep 17. 2(3): 100640
      In S. cerevisiae, we identified rhomboid pseudoprotease Dfm1 as the major mediator for removing or retrotranslocating misfolded membrane substrates from the ER (endoplasmic reticulum). Long-standing challenges with rapid suppression of dfm1-null cells have limited the biochemical study of Dfm1's role in ER protein quality control. Here, we provide a protocol for the generation and handling of dfm1-null cells and procedures for studying normal vs. suppressive alternative retrotranslocation pathways. Our methods can be utilized to study other components involved in retrotranslocation. For complete information on the generation and use of this protocol, please refer to Neal et al. (2017, 2018); Neal et al. (2019); Neal et al. (2020).
    Keywords:  Cell Biology; Cell culture; Cell separation/fractionation; Cell-based Assays; Flow Cytometry/Mass Cytometry; Genetics; Model Organisms; Protein Biochemistry
    DOI:  https://doi.org/10.1016/j.xpro.2021.100640
  10. Mol Neurobiol. 2021 Jul 20.
      The non-toxic C-terminal fragment of the tetanus toxin (TTC) has been described as a neuroprotective molecule since it binds to Trk receptors and activates Trk-dependent signaling, activating neuronal survival pathways and inhibiting apoptosis. Previous in vivo studies have demonstrated the ability of this molecule to increase mice survival, inhibit apoptosis and regulate autophagy in murine models of neurodegenerative diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. Prion diseases are fatal neurodegenerative disorders in which the main pathogenic event is the conversion of the cellular prion protein (PrPC) into an abnormal and misfolded isoform known as PrPSc. These diseases share different pathological features with other neurodegenerative diseases, such as amyotrophic lateral sclerosis, Parkinson's disease or Alzheimer's disease. Hitherto, there are no effective therapies to treat prion diseases. Here, we present a pilot study to test the therapeutic potential of TTC to treat prion diseases. C57BL6 wild-type mice and the transgenic mice Tg338, which overexpress PrPC, were intracerebrally inoculated with scrapie prions and then subjected to a treatment consisting of repeated intramuscular injections of TTC. Our results indicate that TTC displays neuroprotective effects in the murine models of prion disease reducing apoptosis, regulating autophagy and therefore increasing neuronal survival, although TTC did not increase survival time in these models.
    Keywords:  Autophagy; Neurodegeneration; Prion; Prion diseases; Tetanus toxin
    DOI:  https://doi.org/10.1007/s12035-021-02489-5
  11. Front Cell Dev Biol. 2021 ;9 692517
      Dormancy is a lifecycle delay that allows organisms to escape suboptimal environmental conditions. As a genetically programmed type of dormancy, diapause is usually accompanied by metabolic depression and enhanced tolerance toward adverse environmental factors. However, the drivers and regulators that steer an organism's development into a state of suspended animation to survive environmental stress have not been fully uncovered. Heat shock proteins 70 (HSP70s), which are often produced in response to various types of stress, have been suggested to play a role in diapause. Considering the diversity of the Hsp70 family, different family members may have different functions during diapause. In the present study, we demonstrate the expression of two hsp70 genes (A and B together with protein localization of B) throughout continuous and diapause interrupted development of Daphnia magna. Before and after diapause, the expression of Dmhsp70-A is low. Only shortly before diapause and during diapause, Dmhsp70-A is significantly upregulated and may therefore be involved in diapause preparation and maintenance. In contrast, Dmhsp70-B is expressed only in developing embryos but not in diapausing embryos. During continuous development, the protein of this Hsp70 family member is localized in the cytosol. When we expose both embryo types to heat stress, expression of both hsp70 genes increases only in developing embryos, and the protein of family member B is translocated to the nucleus. In this stress formation, this protein provides effective protection of nucleoplasmic DNA. As we also see this localization in diapausing embryos, it seems that Daphnia embryo types share a common subcellular strategy when facing dormancy or heat shock, i.e., they protect their DNA by HSP70B nuclear translocation. Our study underlines the distinctive roles that different Hsp70 family members play throughout continuous and diapause interrupted development.
    Keywords:  Daphnia; Hsp70; diapause; embryonic development; temperature stress
    DOI:  https://doi.org/10.3389/fcell.2021.692517
  12. EMBO Mol Med. 2021 Jul 22. e14714
      Brain-matter vacuolation is a defining trait of all prion diseases, yet its cause is unknown. Here, we report that prion infection and prion-mimetic antibodies deplete the phosphoinositide kinase PIKfyve-which controls endolysosomal maturation-from mouse brains, cultured cells, organotypic brain slices, and brains of Creutzfeldt-Jakob disease victims. We found that PIKfyve is acylated by the acyltransferases zDHHC9 and zDHHC21, whose juxtavesicular topology is disturbed by prion infection, resulting in PIKfyve deacylation and rapid degradation, as well as endolysosomal hypertrophy and activation of TFEB-dependent lysosomal enzymes. A protracted unfolded protein response (UPR), typical of prion diseases, also induced PIKfyve deacylation and degradation. Conversely, UPR antagonists restored PIKfyve levels in prion-infected cells. Overexpression of zDHHC9 and zDHHC21, administration of the antiprion polythiophene LIN5044, or supplementation with the PIKfyve reaction product PI(3,5)P2 suppressed prion-induced vacuolation and restored lysosomal homeostasis. Thus, PIKfyve emerges as a central mediator of vacuolation and neurotoxicity in prion diseases.
    Keywords:  neurodegeneration; palmitoylation; prion; spongiosis; unfolded protein response
    DOI:  https://doi.org/10.15252/emmm.202114714
  13. Biochem J. 2021 Jul 30. 478(14): 2733-2758
      Neurodegenerative diseases such as Alzheimer's and Parkinson's remain highly prevalent and incurable disorders. A major challenge in fully understanding and combating the progression of these diseases is the complexity of the network of processes that lead to progressive neuronal dysfunction and death. An ideal therapeutic avenue is conceivably one that could address many if not all of these multiple misregulated mechanisms. Over the years, chemical intervention for the up-regulation of the endogenous posttranslational modification (PTM) O-GlcNAc has been proposed as a potential strategy to slow down the progression of neurodegeneration. Through the development and application of tools that allow dissection of the mechanistic roles of this PTM, there is now a growing body of evidence that O-GlcNAc influences a variety of important neurodegeneration-pertinent mechanisms, with an overall protective effect. As a PTM that is appended onto numerous proteins that participate in protein quality control and homeostasis, metabolism, bioenergetics, neuronal communication, inflammation, and programmed death, O-GlcNAc has demonstrated beneficence in animal models of neurodegenerative diseases, and its up-regulation is now being pursued in multiple clinical studies.
    Keywords:   O-GlcNAc; neurodegeneration; protein aggregation
    DOI:  https://doi.org/10.1042/BCJ20200609
  14. STAR Protoc. 2021 Sep 17. 2(3): 100654
      Quantitative assessment of neuropathological changes is essential for the characterization of animal models of neurodegenerative disease. Here, we describe a detailed protocol for the detection and quantification of key neuropathological changes in Alzheimer's mouse models. The protocol covers detailed methods including perfusion, dissection, and paraffinization of the brain, preparation of serial brain sections, immunohistochemical analysis, stereological quantification, and sample coding methods for genotype blind analysis. This protocol may be applied to the analysis of neuropathological changes of other neurological disorders. For complete details on the use and execution of this protocol, please refer to Lee et al. (2020), Kang and Shen (2020), Giaime et al. (2017), Xia et al. (2015), Watanabe et al. (2012, 2014), Wines-Samuelson et al. (2010), and Saura et al. (2004).
    Keywords:  Microbiology; Model Organisms; Neuroscience
    DOI:  https://doi.org/10.1016/j.xpro.2021.100654
  15. Autophagy. 2021 Jul 21. 1-20
      Macroautophagy (hereafter referred to as autophagy) is a finely tuned process of programmed degradation and recycling of proteins and cellular components, which is crucial in neuronal function and synaptic integrity. Mounting evidence implicates chromatin remodeling in fine-tuning autophagy pathways. However, this epigenetic regulation is poorly understood in neurons. Here, we investigate the role in autophagy of KANSL1, a member of the nonspecific lethal complex, which acetylates histone H4 on lysine 16 (H4K16ac) to facilitate transcriptional activation. Loss-of-function of KANSL1 is strongly associated with the neurodevelopmental disorder Koolen-de Vries Syndrome (KdVS). Starting from KANSL1-deficient human induced-pluripotent stem cells, both from KdVS patients and genome-edited lines, we identified SOD1 (superoxide dismutase 1), an antioxidant enzyme, to be significantly decreased, leading to a subsequent increase in oxidative stress and autophagosome accumulation. In KANSL1-deficient neurons, autophagosome accumulation at excitatory synapses resulted in reduced synaptic density, reduced GRIA/AMPA receptor-mediated transmission and impaired neuronal network activity. Furthermore, we found that increased oxidative stress-mediated autophagosome accumulation leads to increased MTOR activation and decreased lysosome function, further preventing the clearing of autophagosomes. Finally, by pharmacologically reducing oxidative stress, we could rescue the aberrant autophagosome formation as well as synaptic and neuronal network activity in KANSL1-deficient neurons. Our findings thus point toward an important relation between oxidative stress-induced autophagy and synapse function, and demonstrate the importance of H4K16ac-mediated changes in chromatin structure to balance reactive oxygen species- and MTOR-dependent autophagy.Abbreviations: APO: apocynin; ATG: autophagy related; BAF: bafilomycin A1; BSO: buthionine sulfoximine; CV: coefficient of variation; DIV: days in vitro; H4K16ac: histone 4 lysine 16 acetylation; iPSC: induced-pluripotent stem cell; KANSL1: KAT8 regulatory NSL complex subunit 1; KdVS: Koolen-de Vries Syndrome; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEA: micro-electrode array; MTOR: mechanistic target of rapamycin kinase; NSL complex: nonspecific lethal complex; 8-oxo-dG: 8-hydroxydesoxyguanosine; RAP: rapamycin; ROS: reactive oxygen species; sEPSCs: spontaneous excitatory postsynaptic currents; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; SYN: synapsin; WRT: wortmannin.
    Keywords:  Autophagy; Koolen-de Vries syndrome; MTOR; iPSCs; neuronal development; reactive oxygen species; synaptic function
    DOI:  https://doi.org/10.1080/15548627.2021.1936777
  16. Int J Mol Sci. 2021 Jul 06. pii: 7271. [Epub ahead of print]22(14):
      We recently demonstrated that chemical proteasome inhibition induced inner retinal degeneration, supporting the pivotal roles of the ubiquitin-proteasome system in retinal structural integrity maintenance. In this study, using beclin1-heterozygous (Becn1-Het) mice with autophagic dysfunction, we tested our hypothesis that autophagy could be a compensatory retinal protective mechanism for proteasomal impairment. Despite the reduced number of autophagosome, the ocular tissue morphology and intraocular pressure were normal. Surprisingly, Becn1-Het mice experienced the same extent of retinal degeneration as was observed in wild-type mice, following an intravitreal injection of a chemical proteasome inhibitor. Similarly, these mice equally responded to other chemical insults, including endoplasmic reticulum stress inducer, N-methyl-D-aspartate, and lipopolysaccharide. Interestingly, in cultured neuroblastoma cells, we found that the mammalian target of rapamycin-independent autophagy activators, lithium chloride and rilmenidine, rescued these cells against proteasome inhibition-induced death. These results suggest that Becn1-mediated autophagy is not an effective intrinsic protective mechanism for retinal damage induced by insults, including impaired proteasomal activity; furthermore, autophagic activation beyond normal levels is required to alleviate the cytotoxic effect of proteasomal inhibition. Further studies are underway to delineate the precise roles of different forms of autophagy, and investigate the effects of their activation in rescuing retinal neurons under various pathological conditions.
    Keywords:  autophagy; neuroprotection; proteasome inhibition; retinal degeneration
    DOI:  https://doi.org/10.3390/ijms22147271
  17. J Exp Med. 2021 Sep 06. pii: e20202717. [Epub ahead of print]218(9):
      Alzheimer's disease (AD) is characterized by extracellular aggregates of amyloid β peptides, intraneuronal tau aggregates, and neuronal death. This pathology triggers activation of microglia. Because variants of genes expressed in microglia correlate with AD risk, microglial response to pathology plausibly impacts disease course. In mouse AD models, single-cell RNA sequencing (scRNA-seq) analyses delineated this response as progressive conversion of homeostatic microglia into disease-associated microglia (DAM); additional reactive microglial populations have been reported in other models of neurodegeneration and neuroinflammation. We review all of these microglial signatures, highlighting four fundamental patterns: DAM, IFN-microglia, MHC-II microglia, and proliferating microglia. We propose that all reported microglia populations are either just one or a combination, depending on the clustering strategy applied and the disease model. We further review single-nucleus RNA sequencing (snRNA-seq) data from human AD specimens and discuss reasons for parallels and discrepancies between human and mouse transcriptional profiles. Finally, we outline future directions for delineating the microglial impact in AD pathogenesis.
    DOI:  https://doi.org/10.1084/jem.20202717
  18. Mol Neurobiol. 2021 Jul 19.
      The main histopathology of Alzheimer's disease (AD) is featured by the extracellular accumulation of amyloid-β (Aβ) plaques and intracellular tau neurofibrillary tangles (NFT) in the brain, which is likely to result from co-pathogenic interactions among multiple factors, e.g., aging or genes. The link between defective autophagy/mitophagy and AD pathologies is still under investigation and not fully established. In this review, we consider how AD is associated with impaired autophagy and mitophagy, and how these impact pathological hallmarks as well as the potential mechanisms. This complicated interplay between autophagy or mitophagy and histopathology in AD suggests that targeting autophagy or mitophagy probably is a promising anti-AD drug candidate. Finally, we review the implications of some new insights for induction of autophagy or mitophagy as the new therapeutic way that targets processes upstream of both NFT and Aβ plaques, and hence stops the neurodegenerative course in AD.
    Keywords:  Alzheimer’s disease; Autophagy; Dementia; Mitophagy; Molecular mechanism
    DOI:  https://doi.org/10.1007/s12035-021-02487-7
  19. Methods Protoc. 2021 Jul 19. pii: 50. [Epub ahead of print]4(3):
      Induced pluripotent stem cells (iPSCs) derived from human somatic cells have created new opportunities to generate disease-relevant cells. Thus, as the use of patient-derived stem cells has become more widespread, having a workflow to monitor each line is critical. This ensures iPSCs pass a suite of quality-control measures, promoting reproducibility across experiments and between labs. With this in mind, we established a multistep workflow to assess our newly generated iPSCs. Our workflow tests four benchmarks: cell growth, genomic stability, pluripotency, and the ability to form the three germline layers. We also outline a simple test for assessing cell growth and highlight the need to compare different growth media. Genomic integrity in the human iPSCs is analyzed by G-band karyotyping and a qPCR-based test for the detection of common karyotypic abnormalities. Finally, we confirm that the iPSC lines can differentiate into a given cell type, using a trilineage assay, and later confirm that each iPSC can be differentiated into one cell type of interest, with a focus on the generation of cortical neurons. Taken together, we present a multistep quality-control workflow to evaluate newly generated iPSCs and detail the findings on these lines as they are tested within the workflow.
    Keywords:  cortical neurons; genomic integrity; human-induced pluripotent stem cells; neural progenitor cells; quality control; trilineage differentiation
    DOI:  https://doi.org/10.3390/mps4030050
  20. Front Aging Neurosci. 2021 ;13 661505
      A classical hallmark of Parkinson's disease (PD) pathogenesis is the accumulation of misfolded alpha-synuclein (αSyn) within Lewy bodies and Lewy neurites, although its role in microglial dysfunction and resultant dopaminergic (DAergic) neurotoxicity is still elusive. Previously, we identified that protein kinase C delta (PKCδ) is activated in post mortem PD brains and experimental Parkinsonism and that it participates in reactive microgliosis; however, the relationship between PKCδ activation, endoplasmic reticulum stress (ERS) and the reactive microglial activation state in the context of α-synucleinopathy is largely unknown. Herein, we show that oxidative stress, mitochondrial dysfunction, NLR family pyrin domain containing 3 (NLRP3) inflammasome activation, and PKCδ activation increased concomitantly with ERS markers, including the activating transcription factor 4 (ATF-4), serine/threonine-protein kinase/endoribonuclease inositol-requiring enzyme 1α (p-IRE1α), p-eukaryotic initiation factor 2 (eIF2α) as well as increased generation of neurotoxic cytokines, including IL-1β in aggregated αSynagg-stimulated primary microglia. Importantly, in mouse primary microglia-treated with αSynagg we observed increased expression of Thioredoxin-interacting protein (TXNIP), an endogenous inhibitor of the thioredoxin (Trx) pathway, a major antioxidant protein system. Additionally, αSynagg promoted interaction between NLRP3 and TXNIP in these cells. In vitro knockdown of PKCδ using siRNA reduced ERS and led to reduced expression of TXNIP and the NLRP3 activation response in αSynagg-stimulated mouse microglial cells (MMCs). Additionally, attenuation of mitochondrial reactive oxygen species (mitoROS) via mito-apocynin and amelioration of ERS via the eIF2α inhibitor salubrinal (SAL) reduced the induction of the ERS/TXNIP/NLRP3 signaling axis, suggesting that mitochondrial dysfunction and ERS may act in concert to promote the αSynagg-induced microglial activation response. Likewise, knockdown of TXNIP by siRNA attenuated the αSynagg-induced NLRP3 inflammasome activation response. Finally, unilateral injection of αSyn preformed fibrils (αSynPFF) into the striatum of wild-type mice induced a significant increase in the expression of nigral p-PKCδ, ERS markers, and upregulation of the TXNIP/NLRP3 inflammasome signaling axis prior to delayed loss of TH+ neurons. Together, our results suggest that inhibition of ERS and its downstream signaling mediators TXNIP and NLRP3 might represent novel therapeutic avenues for ameliorating microglia-mediated neuroinflammation in PD and other synucleinopathies.
    Keywords:  ER stress; NLRP3; PKCδ; Parkinson’s disease; TXNIP
    DOI:  https://doi.org/10.3389/fnagi.2021.661505
  21. EMBO J. 2021 Jul 23. e107911
      Cell growth is orchestrated by a number of interlinking cellular processes. Components of the TOR pathway have been proposed as potential regulators of cell growth, but little is known about their immediate effects on protein synthesis in response to TOR-dependent growth inhibition. Here, we present a resource providing an in-depth characterisation of Schizosaccharomyces pombe phosphoproteome in relation to changes observed in global cellular protein synthesis upon TOR inhibition. We find that after TOR inhibition, the rate of protein synthesis is rapidly reduced and that notable phosphorylation changes are observed in proteins involved in a range of cellular processes. We show that this reduction in protein synthesis rates upon TOR inhibition is not dependent on S6K activity, but is partially dependent on the S. pombe homologue of eIF4G, Tif471. Our study demonstrates the impact of TOR-dependent phospho-regulation on the rate of protein synthesis and establishes a foundational resource for further investigation of additional TOR-regulated targets both in fission yeast and other eukaryotes.
    Keywords:  TOR regulation; phosphoproteomics; protein synthesis
    DOI:  https://doi.org/10.15252/embj.2021107911
  22. Molecules. 2021 Jul 14. pii: 4273. [Epub ahead of print]26(14):
      Protein folding is important for protein homeostasis/proteostasis in the human body. We have established the ability to manipulate protein unfolding/refolding for β-lactoglobulin using the induced mechanical energy in the thin film microfluidic vortex fluidic device (VFD) with monitoring as such using an aggregation-induced emission luminogen (AIEgen), TPE-MI. When denaturant (guanidine hydrochloride) is present with β-lactoglobulin, the VFD accelerates the denaturation reaction in a controlled way. Conversely, rapid renaturation of the unfolded protein occurs in the VFD in the absence of the denaturant. The novel TPE-MI reacts with exposed cysteine thiol when the protein unfolds, as established with an increase in fluorescence intensity. TPE-MI provides an easy and accurate way to monitor the protein folding, with comparable results established using conventional circular dichroism. The controlled VFD-mediated protein folding coupled with in situ bioprobe AIEgen monitoring is a viable methodology for studying the denaturing of proteins.
    Keywords:  aggregation induced emission; protein folding/unfolding; vortex fluidic device
    DOI:  https://doi.org/10.3390/molecules26144273
  23. Aging (Albany NY). 2021 07 20. undefined(undefined):
      
    Keywords:  aging; biomarker; circulating cell-free mitochondrial DNA; exosomes; extracellular vesicles; microvesicles; mitochondria; mitochondrial DNA
    DOI:  https://doi.org/10.18632/aging.203358
  24. Curr Opin Chem Biol. 2021 Jul 15. pii: S1367-5931(21)00078-8. [Epub ahead of print]64 124-130
      Amyloid proteins can aggregate into insoluble fibrils and form amyloid deposits in the human brain, which is the hallmark of many neurodegenerative diseases. Promising strategies toward pathological amyloid proteins and deposition include investigating inhibitors that can disrupt amyloid aggregation or induce misfolding protein degradation. In this review, recent progress of peptide-based inhibitors, including amyloid sequence-derived inhibitors, designed peptides, and peptide mimics, is highlighted. Based on the increased understanding of peptide design and precise amyloid structures, these peptides exhibit advanced inhibitory activities against fibrous aggregation as well as enhanced druggability.
    Keywords:  Aggregation; Amyloid; Peptide inhibitor; Protein degradation
    DOI:  https://doi.org/10.1016/j.cbpa.2021.05.011
  25. Cell Death Dis. 2021 Jul 23. 12(8): 733
      Glioblastoma multiforme (GBM) is an extremely aggressive brain tumor for which new therapeutic approaches are urgently required. Unfolded protein response (UPR) plays an important role in the progression of GBM and is a promising target for developing novel therapeutic interventions. We identified ubiquitin-activating enzyme 1 (UBA1) inhibitor TAK-243 that can strongly induce UPR in GBM cells. In this study, we evaluated the functional activity and mechanism of TAK-243 in preclinical models of GBM. TAK-243 significantly inhibited the survival, proliferation, and colony formation of GBM cell lines and primary GBM cells. It also revealed a significant anti-tumor effect on a GBM PDX animal model and prolonged the survival time of tumor-bearing mice. Notably, TAK-243 more effectively inhibited the survival and self-renewal ability of glioblastoma stem cells (GSCs) than GBM cells. Importantly, we found that the expression level of GRP78 is a key factor in determining the sensitivity of differentiated GBM cells or GSCs to TAK-243. Mechanistically, UBA1 inhibition disrupts global protein ubiquitination in GBM cells, thereby inducing ER stress and UPR. UPR activates the PERK/ATF4 and IRE1α/XBP signaling axes. These findings indicate that UBA1 inhibition could be an attractive strategy that may be potentially used in the treatment of patients with GBM, and GRP78 can be used as a molecular marker for personalized treatment by targeting UBA1.
    DOI:  https://doi.org/10.1038/s41419-021-04023-w
  26. Vaccine. 2021 Jul 19. pii: S0264-410X(21)00882-3. [Epub ahead of print]
      Aging-related decline in immune functions, termed immunosenescence, is a primary cause of reduced protective responses to vaccines in the elderly, due to impaired induction of cellular and humoral responses to new antigens (Ag), especially if the response is T cell dependent. The result is a more severe morbidity following infections, more prolonged and frequent hospitalization, and a higher mortality rate than in the general population. Therefore, there is an increasing need to develop vaccination strategies that overcome immunosenescence, especially for aging-related diseases such as Alzheimer's disease (AD). Here we report a new vaccination strategy harnessing memory-based immunity, which is less affected by aging. We found that aged C57BL/6 and 5xFAD mice exhibit a dramatic reduction in anti-Amyloid-β (Aβ) antibody (Ab) production. We aimed to reverse this process by inducing memory response at a young age. To this end, young mice were primed with the vaccine carrier Hepatitis B surface antigen (HBsAg). At an advanced age, these mice were immunized with an Aβ1-11 fused to HBsAg. This vaccination scheme elicited a markedly higher Aβ-specific antibody titer than vaccinating aged unprimed mice with the same construct. Importantly, this vaccine strategy more efficiently reduced cerebral Aβ levels and altered microglial phenotype. Overall, we provide evidence that priming with an exogenous Ag carrier can overcome impaired humoral responses to self-antigens in the elderly, paving the route for a potent immunotherapy to AD.
    Keywords:  Alzheimer’s disease; Amyloid-β; Immunosenescence; Microglia; Priming; Vaccine
    DOI:  https://doi.org/10.1016/j.vaccine.2021.07.023
  27. Aging Cell. 2021 Jul 18. e13430
      Dental pulp stem cells (DPSCs) play a vital role in tooth restoration, regeneration, and homeostasis. The link between DPSC senescence and tooth aging has been well-recognized. ROR2 plays an important role in aging-related gene expression. However, the expression and function of ROR2 in DPSC aging remain largely unknown. In this study, we found that ROR2 expression was significantly decreased in aged pulp tissues and DPSCs. The depletion of ROR2 in young DPSCs inhibits their self-renewal capacity, while its overexpression in aged DPSCs restores their self-renewal capacity. Interestingly, we found that sphingomyelin (SM) is involved in the senescence of DPSCs regulated by ROR2. Mechanistically, we confirmed that ROR2 inhibited the phosphorylation of STK4, which promoted the translocation of Forkhead Box O1 (FOXO1) to the nucleus. STK4 inhibition or knockdown of FOXO1 markedly increased the proliferation of DPSCs and upregulated the expression of SMS1, which catalyzed SM biogenesis. Moreover, FOXO1 directly bound to the SMS1 promoter, repressing its transcription. Our findings demonstrated the critical role of the ROR2/STK4-FOXO1/SMS1 axis in the regulation of SM biogenesis and DPSC senescence, providing a novel target for antagonizing tooth aging.
    Keywords:  FOXO1; ROR2; SMS1; dental pulp stem cells; senescence
    DOI:  https://doi.org/10.1111/acel.13430
  28. J Cell Physiol. 2021 Jul 23.
      IRE1 is an important central regulator of unfolded protein response (UPR) in the endoplasmic reticulum (ER) because of its ability to regulate cell fate as a function of stress sensing. When misfolded proteins accumulated in chondrocytes ER, IRE1 disintegrates with BIP/GRP78 and undergoes dimer/oligomerization and transautophosphorylation. These two processes are mediated through an enzyme activity of IRE1 to activate endoribonuclease and generates XBP1 by unconventional splicing of XBP1 messenger RNA. Thereby promoting the transcription of UPR target genes and apoptosis. The deficiency of inositol-requiring enzyme 1α (IRE1α) in chondrocytes downregulates prosurvival factors XBP1S and Bcl-2, which enhances the apoptosis of chondrocytes through increasing proapoptotic factors caspase-3, p-JNK, and CHOP. Meanwhile, the activation of IRE1α increases chondrocyte viability and reduces cell apoptosis. However, the understanding of IRE1 responses and cell death fate remains controversial. This review provides updated data about the role IRE1 plays in chondrocytes and new insights about the potential efficacy of IRE1 regulation in cartilage repair and osteoarthritis treatment.
    Keywords:  ERS; IRE1; apoptosis; chondrocyte; osteoarthritis
    DOI:  https://doi.org/10.1002/jcp.30537
  29. Front Cell Infect Microbiol. 2021 ;11 704494
      Coxsackievirus B3 (CVB3) is a common enterovirus that causes systemic inflammatory diseases, such as myocarditis, meningitis, and encephalitis. CVB3 has been demonstrated to subvert host cellular responses via autophagy to support viral replication in neural stem cells. Mitophagy, a specialized form of autophagy, contributes to mitochondrial quality control via degrading damaged mitochondria. Here, we show that CVB3 infection induces mitophagy in human neural progenitor cells, HeLa and H9C2 cardiomyocytes. In particular, CVB3 infection triggers mitochondrial fragmentation, loss of mitochondrial membrane potential, and Parkin/LC3 translocation to the mitochondria. Rapamycin or carbonyl cyanide m-chlorophenyl hydrazone (CCCP) treatment led to increased CVB3 RNA copy number in a dose-dependent manner, suggesting enhanced viral replication via autophagy/mitophagy activation, whereas knockdown of PTEN-induced putative kinase protein 1(PINK1) led to impaired mitophagy and subsequent reduction in viral replication. Furthermore, CCCP treatment inhibits the interaction between mitochondrial antiviral signaling protein (MAVS) and TANK-binding kinase 1(TBK1), thus contributing to the abrogation of type I and III interferon (IFN) production, suggesting that mitophagy is essential for the inhibition of interferon signaling. Our findings suggest that CVB3-mediated mitophagy suppresses IFN pathways by promoting fragmentation and subsequent sequestration of mitochondria by autophagosomes.
    Keywords:  Coxsackievirus B3 virus; interferon; mitochondrial dynamics; mitophagy; neural progenitor cells and stem cells
    DOI:  https://doi.org/10.3389/fcimb.2021.704494
  30. Aging (Albany NY). 2021 Jul 21. 13
      Research on cerebral glucose metabolism has shown that the aging brain experiences a fall of aerobic glycolysis, and that the age-related loss of aerobic glycolysis may accelerate Alzheimer's disease pathology. In the healthy brain, aerobic glycolysis, namely the use of glucose outside oxidative phosphorylation, may cover energy demand and increase neuronal resilience to stressors at once. Currently, the drivers of aerobic glycolysis in neurons are unknown. We previously demonstrated that synthetic monomers of β-amyloid protein (Aβ) enhance glucose uptake in neurons, and that endogenous Aβ is required for depolarization-induced glucose uptake in cultured neurons. In this work, we show that cultured cortical neurons increased aerobic glycolysis in response to the inhibition of oxidative phosphorylation by oligomycin or to a kainate pulse. Such an increase was prevented by blocking the endogenous Aβ tone and re-established by the exogenous addition of synthetic Aβ monomers. The activity of mitochondria-bound hexokinase-1 appeared to be necessary for monomers-stimulated aerobic glycolysis during oxidative phosphorylation blockade or kainate excitation. Our data suggest that, through Aβ release, neurons coordinate glucose uptake with aerobic glycolysis in response to metabolic stressors. The implications of this new finding are that the age-related drop in aerobic glycolysis and the susceptibility to Alzheimer's disease could be linked to factors interfering with release and functions of Aβ monomers.
    Keywords:  AMPK; Alzheimer’s disease; aerobic glycolysis; default mode network; kainate; lactate; oligomycin; β-amyloid monomers
    DOI:  https://doi.org/10.18632/aging.203330
  31. Int J Mol Sci. 2021 Jul 06. pii: 7242. [Epub ahead of print]22(14):
      Copper is an essential trace element and possesses critical roles in various brain functions. A considerable amount of copper accumulates in the synapse and is secreted in neuronal firings in a manner similar to zinc. Synaptic copper and zinc modulate neuronal transmission and contribute to information processing. It has been established that excess zinc secreted during transient global ischemia plays central roles in ischemia-induced neuronal death and the pathogenesis of vascular dementia. We found that a low concentration of copper exacerbates zinc-induced neurotoxicity, and we have demonstrated the involvement of the endoplasmic reticulum (ER) stress pathway, the stress-activated protein kinases/c-Jun amino-terminal kinases (SAPK/JNK) signaling pathway, and copper-induced reactive oxygen species (ROS) production. On the basis of our results and other studies, we discuss the collaborative roles of copper in zinc-induced neurotoxicity in the synapse and the contribution of copper to the pathogenesis of vascular dementia.
    Keywords:  MAP kinase; calcium homeostasis; endoplasmic reticulum; mitochondria; synapse; zinc
    DOI:  https://doi.org/10.3390/ijms22147242
  32. Genes Dev. 2021 Jul 22.
      The meninges are important for brain development and pathology. Using single-cell RNA sequencing, we have generated the first comprehensive transcriptional atlas of neonatal mouse meningeal leukocytes under normal conditions and after perinatal brain injury. We identified almost all known leukocyte subtypes and found differences between neonatal and adult border-associated macrophages, thus highlighting that neonatal border-associated macrophages are functionally immature with regards to immune responses compared with their adult counterparts. We also identified novel meningeal microglia-like cell populations that may participate in white matter development. Early after the hypoxic-ischemic insult, neutrophil numbers increased and they exhibited increased granulopoiesis, suggesting that the meninges are an important site of immune cell expansion with implications for the initiation of inflammatory cascades after neonatal brain injury. Our study provides a single-cell resolution view of the importance of meningeal leukocytes at the early stage of development in health and disease.
    Keywords:  meningeal leukocytes; neonatal mouse; preterm brain injury; single-cell RNA sequencing
    DOI:  https://doi.org/10.1101/gad.348190.120
  33. Int J Mol Sci. 2021 Jul 05. pii: 7225. [Epub ahead of print]22(13):
      (1) Background: Autophagy, the major cytoplasmic process of substrate turnover, declines with age, contributing to proteostasis decline, accumulation of harmful protein aggregates, damaged mitochondria and to ROS production. Accordingly, abnormalities in the autophagic flux may contribute to many different pathophysiological conditions associated with ageing, including neurodegeneration. Recent data have shown that extra-virgin olive oil (EVOO) polyphenols stimulate cell defenses against plaque-induced neurodegeneration, mainly, through autophagy induction. (2) Methods: We carried out a set of in vitro experiments on SH-SY5Y human neuroblastoma cells exposed to toxic Aβ1-42 oligomers to investigate the molecular mechanisms involved in autophagy activation by two olive oil polyphenols, oleuropein aglycone (OleA), arising from the hydrolysis of oleuropein (Ole), the main polyphenol found in olive leaves and drupes and its main metabolite, hydroxytyrosol (HT). (3) Results: Our data show that the mixture of the two polyphenols activates synergistically the autophagic flux preventing cell damage by Aβ1-42 oligomers., in terms of ROS production, and impairment of mitochondria. (4) Conclusion: Our results support the idea that EVOO polyphenols act synergistically in autophagy modulation against neurodegeneration. These data confirm and provide the rationale to consider these molecules, alone or in combination, as promising candidates to contrast ageing-associated neurodegeneration.
    Keywords:  Alzheimer’s disease; autophagy; oligomers; polyphenols
    DOI:  https://doi.org/10.3390/ijms22137225
  34. J Cell Biochem. 2021 Jul 23.
      Bag3 has been implicated in a wide variety of physiological processes from autophagy to aggresome formation and from cell transformation to survival. We argue that involvement of Bag3 in many of these processes is due to its distinct function in cell signaling. The structure of Bag3 suggests that it can serve as a scaffold that links molecular chaperones Hsp70 and small Hsps with components of a variety of signaling pathways. Major protein-protein interaction motifs of Bag3 that recruit components of signaling pathways are WW domain and PXXP motif that interacts with SH3-domain proteins. Furthermore, Hsp70-Bag3 appears to be a sensor of abnormal polypeptides during the proteotoxic stress. It also serves as a sensor of a mechanical force during mechanotransduction. Common feature of these and probably certain other sensory mechanisms is that they represent responses to specific kinds of abnormal proteins, i.e. unfolded filamin A in case of mechanotransduction or stalled translating polypeptides in case of sensing proteasome inhibition. Overall Hsp70-Bag3 module represents a novel signaling node that responds to multiple stimuli and controls multiple physiological processes.
    Keywords:  Hippo; heat shock proteins; signaling pathways; stress kinases
    DOI:  https://doi.org/10.1002/jcb.30111
  35. Cell Rep. 2021 Jul 20. pii: S2211-1247(21)00797-X. [Epub ahead of print]36(3): 109399
      The pathogenic mechanism by which dominant mutations in VCP cause multisystem proteinopathy (MSP), a rare neurodegenerative disease that presents as fronto-temporal lobar degeneration with TDP-43 inclusions (FTLD-TDP), remains unclear. To explore this, we inactivate VCP in murine postnatal forebrain neurons (VCP conditional knockout [cKO]). VCP cKO mice have cortical brain atrophy, neuronal loss, autophago-lysosomal dysfunction, and TDP-43 inclusions resembling FTLD-TDP pathology. Conditional expression of a single disease-associated mutation, VCP-R155C, in a VCP null background similarly recapitulates features of VCP inactivation and FTLD-TDP, suggesting that this MSP mutation is hypomorphic. Comparison of transcriptomic and proteomic datasets from genetically defined patients with FTLD-TDP reveal that progranulin deficiency and VCP insufficiency result in similar profiles. These data identify a loss of VCP-dependent functions as a mediator of FTLD-TDP and reveal an unexpected biochemical similarity with progranulin deficiency.
    Keywords:  FTD; FTLD; TDP-43; VCP; autophagy; multisystem proteinopathy; neurodegeneration; progranulin
    DOI:  https://doi.org/10.1016/j.celrep.2021.109399
  36. Int J Mol Sci. 2021 Jul 15. pii: 7566. [Epub ahead of print]22(14):
      Nervous system development involves proliferation and cell specification of progenitor cells into neurons and glial cells. Unveiling how this complex process is orchestrated under physiological conditions and deciphering the molecular and cellular changes leading to neurological diseases is mandatory. To date, great efforts have been aimed at identifying gene mutations associated with many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Mutations in the RNA/DNA binding protein Fused in Sarcoma/Translocated in Liposarcoma (FUS/TLS) have been associated with motor neuron degeneration in rodents and humans. Furthermore, increased levels of the wild-type protein can promote neuronal cell death. Despite the well-established causal link between FUS mutations and ALS, its role in neural cells remains elusive. In order to shed new light on FUS functions we studied its role in the control of neural stem progenitor cell (NSPC) properties. Here, we report that human wild-type Fused in Sarcoma (WT FUS), exogenously expressed in mouse embryonic spinal cord-derived NSPCs, was localized in the nucleus, caused cell cycle arrest in G1 phase by affecting cell cycle regulator expression, and strongly reduced neuronal differentiation. Furthermore, the expression of the human mutant form of FUS (P525L-FUS), associated with early-onset ALS, drives the cells preferentially towards a glial lineage, strongly reducing the number of developing neurons. These results provide insight into the involvement of FUS in NSPC proliferation and differentiation into neurons and glia.
    Keywords:  ALS; FUS-linked disease; Fused in Sarcoma/Translocated in Liposarcoma (FUS/TLS); cell differentiation; cell proliferation; neural stem progenitor cells (NSPC); neurodegenerative disease
    DOI:  https://doi.org/10.3390/ijms22147566
  37. FEBS J. 2021 Jul 17.
      Ubiquilin (UBQLN) proteins are a dynamic and versatile family of proteins found in all eukaryotes that function in the regulation of proteostasis. Besides their canonical function as shuttle factors in delivering misfolded proteins to the proteasome and autophagy systems for degradation, there is emerging evidence that UBQLN proteins play broader roles in proteostasis. New information suggests the proteins function as chaperones in protein folding, protecting proteins prior to membrane insertion, and as guardians for mitochondrial protein import. In this review, we describe the evidence for these different roles, highlighting how different domains of the proteins impart these functions. We also describe how changes in the structure and phase separation properties of UBQLNs may regulate their activity and function. Finally, we discuss the pathogenic mechanisms by which mutations in UBQLN2 cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We describe the animal model systems made for different UBQLN2 mutations and how lessons learnt from these systems provide fundamental insight into the molecular mechanisms by which UBQLN2 mutations drive disease pathogenesis through disturbances in proteostasis.
    Keywords:  ALS; OXPHOS; UBQLN2; mitochondria
    DOI:  https://doi.org/10.1111/febs.16129
  38. Biochemistry (Mosc). 2021 Jul;86(7): 852-866
      The cerebral dopamine neurotrophic factor (CDNF) together with the mesencephalic astrocyte-derived neurotrophic factor (MANF) form a unique family of neurotrophic factors (NTFs) structurally and functionally different from other proteins with neurotrophic activity. CDNF has no receptors on the cell membrane, is localized mainly in the cavity of endoplasmic reticulum (ER), and its primary function is to regulate ER stress. In addition, CDNF is able to suppress inflammation and apoptosis. Due to its functions, CDNF has demonstrated outstanding protective and restorative properties in various models of neuropathology associated with ER stress, including Parkinson's disease (PD). That is why CDNF already passed clinical trials in patients with PD. However, despite the name, CDNF functions extend far beyond the dopamine system in the brain. In particular, there are data on participation of CDNF in the maturation and maintenance of other neurotransmitter systems, regulation of the processes of neuroplasticity and non-motor behavior. In the present review, we discuss the features of CDNF structure and functions, its protective and regenerative properties.
    Keywords:  ER stress; Parkinson’s disease; cerebral dopamine neurotrophic factor CDNF; neuroprotection; neurotrophic factors; unfolded protein response UPR
    DOI:  https://doi.org/10.1134/S0006297921070063