bims-polyam Biomed News
on Polyamines
Issue of 2024‒09‒29
four papers selected by
Sebastian J. Hofer, University of Graz



  1. Sci Adv. 2024 Sep 20. 10(38): eado8107
      Polyamines, characterized by their polycationic nature, are ubiquitously present in all organisms and play numerous cellular functions. Among polyamines, spermidine stands out as the predominant type in both prokaryotic and eukaryotic cells. The PotD-PotABC protein complex in Escherichia coli, belonging to the adenosine triphosphate-binding cassette transporter family, is a spermidine-preferential uptake system. Here, we report structural details of the polyamine uptake system PotD-PotABC in various states. Our analyses reveal distinct "inward-facing" and "outward-facing" conformations of the PotD-PotABC transporter, as well as conformational changes in the "gating" residues (F222, Y223, D226, and K241 in PotB; Y219 and K223 in PotC) controlling spermidine uptake. Therefore, our structural analysis provides insights into how the PotD-PotABC importer recognizes the substrate-binding protein PotD and elucidates molecular insights into the spermidine uptake mechanism of bacteria.
    DOI:  https://doi.org/10.1126/sciadv.ado8107
  2. Biochim Biophys Acta Mol Cell Res. 2024 Sep 18. pii: S0167-4889(24)00192-7. [Epub ahead of print] 119849
      The protein synthesis within eukaryotic cells is a complex process involving various translation factors. Among these factors, eukaryotic translation initiation factor 5A (eIF5A) emerges as a crucial translation factor with high evolutionary conservation. eIF5A is unique as it is the only protein in eukaryotic cells containing the hypusine modification. Initially presumed to be a translation initiation factor, eIF5A was subsequently discovered to act mainly during the translation elongation phase. Notably, eIF5A facilitates the translation of peptide sequences containing polyproline stretches and exerts a universal regulatory effect on the elongation and termination phases of protein synthesis. Additionally, eIF5A indirectly affects various physiological processes within the cell by modulating the translation of specific proteins. This review provides a comprehensive overview of the structure, physiological functions, various post-translational modifications of eIF5A, and its association with various human diseases. The comparison between eIF5A and its bacterial homolog, EF-P, extends the discussion to the evolutionary conservation of eIF5A. This highlights its significance across different domains of life.
    Keywords:  Elongation factor; Eukaryotic initiation factor eIF5A; Hypusine modification; Translation
    DOI:  https://doi.org/10.1016/j.bbamcr.2024.119849
  3. J Bone Miner Res. 2024 Sep 27. pii: zjae156. [Epub ahead of print]
      Spermine synthase, encoded by the SMS gene, is involved in polyamine metabolism, as it is required for the synthesis of spermine from its precursor molecule spermidine. Pathogenic variants of SMS are known to cause Snyder-Robinson syndrome (SRS), an X-linked recessive disorder causing various symptoms, including intellectual disability, muscular hypotonia, infertility, but also skeletal abnormalities, such as facial dysmorphisms and osteoporosis. Since the impact of a murine SMS deficiency has so far only been analysed in Gy mice, where a large genomic deletion also includes the neighbouring Phex gene, there is only limited knowledge about the potential role of SMS in bone cell regulation. In the present manuscript we describe two patients carrying distinct SMS variants, both diagnosed with osteoporosis. Whereas the first patient displayed all characteristic hallmarks of SRS, the second patient was initially diagnosed, based on laboratory findings, as a case of adult-onset hypophosphatasia. In order to study the impact of SMS inactivation on bone remodelling we took advantage of a newly developed mouse model carrying a pathogenic SMS variant (p.G56S). Compared to their wildtype littermates 12-week-old male SmsG56S/0 mice displayed reduced trabecular bone mass and cortical thickness, as assessed by μCT analysis of the femur. This phenotype was histologically confirmed by the analysis of spine and tibia sections, where we also observed a moderate enrichment of non-mineralized osteoid in SmsG56S/0 mice. Cellular and dynamic histomorphometry further identified a reduced bone formation rate as a main cause of the low bone mass phenotype. Likewise, primary bone marrow cells from SmsG56S/0 mice displayed reduced capacity to form a mineralized matrix ex vivo, thereby suggesting a cell-autonomous mechanism. Taken together, our data identify SMS as an enzyme with physiological relevance for osteoblast activity, thereby demonstrating an important role of polyamine metabolism in the control of bone remodeling.
    Keywords:  Case report; Mouse model; Osteoblasts; Snyder-robinson syndrome; Spermine synthase
    DOI:  https://doi.org/10.1093/jbmr/zjae156
  4. Sci Transl Med. 2024 Sep 25. 16(766): eadn1285
      Acute myeloid leukemia (AML) is a devastating disease initiated and maintained by a rare subset of cells called leukemia stem cells (LSCs). LSCs are responsible for driving disease relapse, making the development of new therapeutic strategies to target LSCs urgently needed. The use of mass spectrometry-based metabolomics profiling has enabled the discovery of unique and targetable metabolic properties in LSCs. However, we do not have a comprehensive understanding of metabolite differences between LSCs and their normal counterparts, hematopoietic stem and progenitor cells (HSPCs). In this study, we used an unbiased mass spectrometry-based metabolomics analysis to define differences in metabolites between primary human LSCs and HSPCs, which revealed that LSCs have a distinct metabolome. Spermidine was the most enriched metabolite in LSCs compared with HSPCs. Pharmacological reduction of spermidine concentrations decreased LSC function but spared normal HSPCs. Polyamine depletion also decreased leukemic burden in patient-derived xenografts. Mechanistically, spermidine depletion induced LSC myeloid differentiation by decreasing eIF5A-dependent protein synthesis, resulting in reduced expression of a select subset of proteins. KAT7, a histone acetyltransferase, was one of the top candidates identified to be down-regulated by spermidine depletion. Overexpression of KAT7 partially rescued polyamine depletion-induced decreased colony-forming ability, demonstrating that loss of KAT7 is an essential part of the mechanism by which spermidine depletion targets AML clonogenic potential. Together, we identified and mechanistically dissected a metabolic vulnerability of LSCs that has the potential to be rapidly translated into clinical trials to improve outcomes for patients with AML.
    DOI:  https://doi.org/10.1126/scitranslmed.adn1285