bims-polyam Biomed News
on Polyamines
Issue of 2023–12–03
five papers selected by
Sebastian J. Hofer, University of Graz



  1. Bioengineered. 2023 Dec;14(1): 2288354
      Quercus suber L. is the main woody tree species in the Mediterranean basin. The in vitro regeneration from adult material, through primary somatic embryogenesis, is a well-known process, but the use of secondary somatic embryos for plant regeneration remains a very sparsely studied process. The main objective of this work is to explore the cork oak regeneration potential by using the secondary somatic embryogenesis process. Mainly, in this work, we report the polyamine effect. Explants used consisted on primary mature embryos, derived from leaves rejuvenated by epicormic shoot of the Moroccan Quercus suber. Three different polyamines were added to the basal medium, which was composed by macronutrients of N30K, 30 g/l glucose, and 7 g/l agar. Three polyamines, Putrescine, Spermine, and Spermidine, were added to the basal medium at 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 mg/l. Explants were tested after 8 weeks. Morphological analysis showed that the medium with 0.4 mg/l Spermidine provided the best result for secondary embryos, which corresponds to a very significant (p < 0.05) increase of 375%. The number of secondary embryos directly formed was 2.70 ± 0.51. Similarly, the optimum concentrations for high number of clusters (0.50 ± 0.11) and embryo clusters (1.43 ± 0.35) were increased by 145% and 158%. The addition of the polyamine also acted on the quality of embryos formed. A very significant (p < 0.05) increase in the size of secondary embryos was observed compared to the medium without polyamines. Spermidine showed the greatest increase (about 38%).
    Keywords:  Cork oak; Putrescine; Spermidine; Spermine; secondary embryos; somatic embryos
    DOI:  https://doi.org/10.1080/21655979.2023.2288354
  2. bioRxiv. 2023 Nov 16. pii: 2023.11.14.567048. [Epub ahead of print]
      The glioblastoma microenvironment is enriched in immunosuppressive factors that potently interfere with the function of cytotoxic T lymphocytes. Cancer cells can directly impact the immune system, but the mechanisms driving these interactions are not completely clear. Here we demonstrate that the polyamine metabolite spermidine is elevated in the glioblastoma tumor microenvironment. Exogenous administration of spermidine drives tumor aggressiveness in an immune-dependent manner in pre-clinical mouse models via reduction of CD8+ T cell frequency and phenotype. Knockdown of ornithine decarboxylase, the rate-limiting enzyme in spermidine synthesis, did not impact cancer cell growth in vitro but did result in extended survival. Furthermore, glioblastoma patients with a more favorable outcome had a significant reduction in spermidine compared to patients with a poor prognosis. Our results demonstrate that spermidine functions as a cancer cell-derived metabolite that drives tumor progression by reducing CD8+T cell number and function.
    DOI:  https://doi.org/10.1101/2023.11.14.567048
  3. Mol Cell Biochem. 2023 Dec 02.
      Rheumatoid arthritis is characterized by a burst of inflammation, the destruction of cartilage and the abundant release of inflammatory factors such as IL-1β. Thus, the effect of IL-1β on cartilage was examined in this study. IL-1β could cause lipid peroxidation and disturbances in iron metabolism by increasing the expression of NCOA4 and decreasing the expression of FTH, which also induced ferritinophagy. In addition, the expression of the key antioxidant proteins SLC7A11 and GPX4 was inhibited by IL-1β, resulting in ferroptosis in chondrocytes. Spermidine (SPD), a low-molecular-weight aliphatic nitrogen-containing compound that widely exists in animals, has been reported to be an antioxidant. In our study, we found that SPD could inhibit ferritinophagy and reverse the decrease in the expression of SLC7A11 and GPX4. Therefore, we uncovered one of the molecular mechanisms of cartilage destruction and inflammation and provide a potential polyamine for the treatment of RA.
    Keywords:  Ferritinophagy; Ferroptosis; IL-1β; Rheumatoid arthritis; Spermidine
    DOI:  https://doi.org/10.1007/s11010-023-04889-8
  4. J Org Chem. 2023 Nov 25.
      A straightforward strategy toward the efficient synthesis of linear saturated polyamines containing 1,2-diaminoethane and/or 1,3-diaminopropane fragments has been developed. The procedure is based on the chemistry of 5- and 6-membered cyclic amidines, including their efficient synthesis from nitrile precursors and subsequent chemoselective reductive-opening by a borane-dimethyl sulfide complex. This two-step procedure provides a robust methodology for the synthesis of linear polyamine skeletons under nonharsh conditions and free of using selective protective groups or tedious workups.
    DOI:  https://doi.org/10.1021/acs.joc.3c02128
  5. Eur J Clin Invest. 2023 Dec 01. e14138
      Mitochondrial dysfunction is a major hallmark of ageing and related chronic disorders. Controlled removal of damaged mitochondria by the autophagic machinery, a process known as mitophagy, is vital for mitochondrial homeostasis and cell survival. The central role of mitochondria in cellular metabolism places mitochondrial removal at the interface of key metabolic pathways affecting the biosynthesis or catabolism of acetyl-coenzyme A, nicotinamide adenine dinucleotide, polyamines, as well as fatty acids and amino acids. Molecular switches that integrate the metabolic status of the cell, like AMP-dependent protein kinase, protein kinase A, mechanistic target of rapamycin and sirtuins, have also emerged as important regulators of mitophagy. In this review, we discuss how metabolic regulation intersects with mitophagy. We place special emphasis on the metabolic regulatory circuits that may be therapeutically targeted to delay ageing and mitochondria-associated chronic diseases. Moreover, we identify outstanding knowledge gaps, such as the ill-defined distinction between basal and damage-induced mitophagy, which must be resolved to boost progress in this area.
    Keywords:  AMPK; NAD; acetyl-CoA; ageing; ageing-related disease; metabolism; mitophagy; spermidine
    DOI:  https://doi.org/10.1111/eci.14138