Am J Cancer Res. 2022 ;12(12): 5516-5531
Transforming Growth Factor beta (TGF-β) is a multifunctional cytokine that regulates cell proliferation, differentiation, and apoptosis. Dysregulation of the TGF-β signaling is one of the major mechanisms underlying tumor progression. We have previously reported that anaplastic lymphoma kinase (ALK) phosphorylates Smad4 at Tyr95, which compromises the DNA-binding ability of Smad4 and thus renders ALK-positive cancer cells resistant to TGF-β tumor-suppressive action. In this study, we demonstrated that tyrosine phosphatase PTPN2 positively regulated TGF-β signaling through dephosphorylating Smad4 at the Tyr95 site. Both in vitro and cell-based assays revealed that PTPN2 bound to and dephosphorylated Smad4, thereby preserving the DNA-binding ability of Smad4. Furthermore, overexpression of PTPN2 restored TGF-β transcriptional and growth inhibitory responses in ALK-positive cancer cells. Consistently, Spermidine, an activator of PTPN2, also promoted TGF-β-induced gene expression, apoptosis, and anti-proliferation effect. Taken together, we revealed that PTPN2 functioned as a tumor suppressor to antagonize the inhibitory effect of tyrosine phosphorylation of Smad4 and to ensure the proper TGF-β growth inhibitory signaling in cancer cells.
Keywords: ALK; Smad; spermidine; tumor suppressor; tyrosine phosphorylation