bims-polyam Biomed News
on Polyamines
Issue of 2022–04–03
six papers selected by
Sebastian J. Hofer, University of Graz



  1. FASEB J. 2022 May;36(5): e22279
      Ornithine decarboxylase (ODC; EC 4.1.1.17) catalyzes the conversion of ornithine to putrescine, the rate-limiting first step for de novo polyamine biosynthesis. Previously, we reported that genetic knockdown of xanthine dehydrogenase 1 (XDH1)-a gene encoding the enzyme involved in the last two steps of uric acid synthesis-causes an increase in ODC transcript levels in fat body of blood-fed Aedes aegypti mosquitoes, suggesting a crosstalk at molecular level between XDH1 and ODC during nitrogen disposal. To further investigate the role of ODC in nitrogen metabolism, we conducted several biochemical and genetic analyses in sugar- and blood-fed A. aegypti females. Distinct ODC gene and protein expression patterns were observed in mosquito tissues dissected during the first gonotrophic cycle. Both pharmacological and RNA interference-mediated knockdown of ODC negatively impacted mosquito survival, disrupted nitrogen waste disposal, delayed oviposition onset, and decreased fecundity in vitellogenic blood-fed females. A lag in the expression of two major digestive serine proteases, a reduction of blood meal digestion in the midgut, and a decrease in vitellogenin yolk protein uptake in ovarian follicles were observed by western blots in ODC-deficient females. Moreover, genetic silencing of ODC showed a broad transcriptional modulation of genes encoding proteins involved in multiple metabolic pathways in mosquito fat body, midgut, and Malpighian tubules prior to and after blood feeding. All together, these data demonstrate that ODC plays an essential role in mosquito metabolism, and that ODC crosstalks with multiple genes and proteins to prevent deadly nitrogen perturbations in A. aegypti females.
    Keywords:  ammonia metabolism; glucose metabolism; oxidative stress; polyamines; survival
    DOI:  https://doi.org/10.1096/fj.202200008R
  2. Exp Ther Med. 2022 Apr;23(4): 310
      Evidence suggests that macrophage pyroptosis promotes the progression of diabetic atherosclerosis. Spermine, a natural cellular metabolite, demonstrates a protective effect against cardiovascular diseases. However, whether spermine has a protective effect against macrophage pyroptosis caused by high glucose (HG) and oxidized low-density lipoprotein (ox-LDL) conditions remains to be elucidated. To investigate the protective effect of spermine and the related underlying mechanism, THP-1 macrophages were treated with HG/ox-LDL, spermine, or the specific nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor ML385. Cell viability was detected using CCK-8, cell membrane permeability was analyzed using lactate dehydrogenase (LDH) and Hoechst/propidium iodide staining and pyroptosis-related gene and protein expression levels were evaluated using polymerase chain reaction and western blot analysis. Spermine showed a potent preventive effect on THP-1 macrophage pyroptosis and oxidative stress induced by HG/ox-LDL. Cells treated with spermine showed increased cell viability, reduced reactive oxygen species (ROS) production, decreased LDH levels in the supernatant and reduced cell swelling. In addition, spermine significantly reduced NLR family pyrin domain containing 3, cleaved caspase-1, N-gasdermin D and IL-1β expression, as well as IL-1β levels in the supernatant. This demonstrated that the inhibition of pyroptosis and oxidative stress due to spermine was Nrf2 dependent. Furthermore, spermine enhanced Nrf2 nuclear translocation, thereby increasing heme oxygenase-1 and NADPH quinone oxidoreductase-1 expression, which subsequently reduced ROS production. In addition, the anti-pyroptotic and antioxidant effects of spermine were reversed by ML385 inhibition of Nrf2. It was concluded that spermine prevented macrophage pyroptosis and increased ROS overproduction by activating the Nrf2 pathway. The data suggested that spermine may be a potential novel drug for the treatment of diabetic atherosclerosis because it targets macrophage pyroptosis.
    Keywords:  THP-1 cells; diabetic atherosclerosis; reactive oxygen species
    DOI:  https://doi.org/10.3892/etm.2022.11239
  3. J Mol Biol. 2022 Mar 28. pii: S0022-2836(22)00138-3. [Epub ahead of print] 167564
      Translation factors are essential for regulation of protein synthesis. The eukaryotic translation initiation factor 5A (eIF5A) family is made up of two paralogues - eIF5A1 and eIF5A2 - which display high sequence homology but distinct tissue tropism. While eIF5A1 directly binds to the ribosome and regulates translation initiation, elongation, and termination, the molecular function of eIF5A2 remains poorly understood. Here, we engineer an eIF5A2 knockout allele in the SW480 colon cancer cell line. Using ribosome profiling and RNA-Sequencing, we reveal that eIF5A2 is functionally distinct from eIF5A1 and does not regulate transcript-specific or global protein synthesis. Instead, eIF5A2 knockout leads to decreased intrinsic antiviral gene expression, including members of the IFITM and APOBEC3 family. Furthermore, cells lacking eIF5A2 display increased permissiveness to virus infection. Our results uncover eIF5A2 as a factor involved regulating the antiviral transcriptome, and reveal an example of how gene duplications of translation factors can result in proteins with distinct functions.
    DOI:  https://doi.org/10.1016/j.jmb.2022.167564
  4. Cancer Rep (Hoboken). 2022 Mar 31. e1616
       BACKGROUND: Survival for patients with high-risk neuroblastoma (HRNB) remains poor despite aggressive multimodal therapies.
    AIMS: To study the feasibility and safety of incorporating a genomic-based targeted agent to induction therapy for HRNB as well as the feasibility and safety of adding difluoromethylornithine (DFMO) to anti-GD2 immunotherapy.
    METHODS: Twenty newly diagnosed HRNB patients were treated on this multicenter pilot trial. Molecular tumor boards selected one of six targeted agents based on tumor-normal whole exome sequencing and tumor RNA-sequencing results. Treatment followed standard upfront HRNB chemotherapy with the addition of the selected targeted agent to cycles 3-6 of induction. Following consolidation, DFMO (750 mg/m2 twice daily) was added to maintenance with dinutuximab and isotretinoin, followed by continuation of DFMO alone for 2 years. DNA methylation analysis was performed retrospectively and compared to RNA expression.
    RESULTS: Of the 20 subjects enrolled, 19 started targeted therapy during cycle 3 and 1 started during cycle 5. Eighty-five percent of subjects met feasibility criteria (receiving 75% of targeted agent doses). Addition of targeted agents did not result in toxicities requiring dose reduction of chemotherapy or permanent discontinuation of targeted agent. Following standard consolidation, 15 subjects continued onto immunotherapy with DFMO. This combination was well-tolerated and resulted in no unexpected adverse events related to DFMO.
    CONCLUSION: This study demonstrates the safety and feasibility of adding targeted agents to standard induction therapy and adding DFMO to immunotherapy for HRNB. This treatment regimen has been expanded to a Phase II trial to evaluate efficacy.
    Keywords:  DFMO; immunotherapy; maintenance; neuroblastoma; precision medicine
    DOI:  https://doi.org/10.1002/cnr2.1616
  5. Hypertens Res. 2022 Mar 30.
      Pulmonary arterial hypertension has led to global health and social problems, but the pathogenic mechanism has not been fully elucidated. Dysregulated metabolism is closely associated with the pathogenesis of pulmonary arterial hypertension. Here, we investigated metabolic profile shifts to reveal the molecular mechanisms underlying pulmonary hypertension. Explanted lung tissues from 13 idiopathic pulmonary arterial hypertension patients, 5 pulmonary arterial hypertension associated with congenital heart disease patients, and 16 controls were collected for untargeted metabolomics analysis with liquid chromatography coupled with tandem mass spectrometry. The KEGG database and MetaboAnalyst 5.0 were used for pathway analysis. A Cox survival analysis model was applied to evaluate the predictive value of metabolites on prognosis. Protein expression levels in human and rat pulmonary arterial hypertension lungs and hypoxia-exposed human pulmonary artery smooth muscle cells were detected by Western blotting to study the molecular mechanisms. Significant differences in metabolites and metabolic pathways were identified among the pulmonary arterial hypertension subgroups and control tissues. The levels of spermine were positively correlated with the patients' cardiac output, and (2e)-2,5-dichloro-4-oxo-2-hexenedioic acid was positively correlated with the patients' serum creatinine levels. Patients with higher thymine levels had a better prognosis. Moreover, seven differential metabolites were associated with the AKT pathway. AKT pathway inactivation was confirmed in human and rat pulmonary hypertensive lungs and pulmonary artery smooth muscle cells exposed to hypoxia. Our findings provide the first metabolomics evidence for pulmonary arterial hypertension pathogenesis in human lungs and may contribute to the improvement in therapeutic strategies.
    Keywords:  AKT pathway; Lung transplantation; Metabolomics; Prognosis; Pulmonary arterial hypertension
    DOI:  https://doi.org/10.1038/s41440-022-00898-0