bims-polyam Biomed News
on Polyamines
Issue of 2021–10–17
seven papers selected by
Sebastian J. Hofer, University of Graz



  1. Amino Acids. 2021 Oct 15.
      Polyamines are important to the survival and activation of organs and tissues via a homeostatic cell-metabolic process, and the polyamine content in cytoplasm decreases with aging. Decreases in cellular polyamine have been known to augment mutagenesis and cell death. Thus, supplementary polyamine in food is important to the prevention of aging. Here we show the anti-aging effects of oral intake of polyamine using luciferase-transgenic rats. Healthy rats, 10-12 weeks old, were given foods containing 0.01% and 0.1% (w/w) of polyamine, as compared a control food without polyamine, for 4 weeks. Using a bioimaging system, the photon intensities seen in the whole bodies and livers of rats consuming 0.1% of polyamine in food were stronger than those in rats consuming 0.01% and 0% of polyamine. However, there were no differences between groups in other characteristics, such as liver damage and body weight. In conclusion, we found that polyamine intake can activate cells throughout the whole body, providing an anti-aging effect.
    Keywords:  Anti-aging; Living imaging; Oral intake; Polyamine; Transgenic rat
    DOI:  https://doi.org/10.1007/s00726-021-03079-4
  2. Int J Mol Sci. 2021 Sep 23. pii: 10255. [Epub ahead of print]22(19):
      Difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase (ODC), has promising activity against various cancers and a tolerable safety profile for long-term use as a chemopreventive agent. However, the anti-tumor effects of DFMO in ovarian cancer cells have not been entirely understood. Our study aimed to identify the effects and mechanism of DFMO in epithelial ovarian cancer cells using SKOV-3 cells. Treatment with DFMO resulted in a significantly reduced cell viability in a time- and dose-dependent manner. DFMO treatment inhibited the activity and downregulated the expression of ODC in ovarian cancer cells. The reduction in cell viability was reversed using polyamines, suggesting that polyamine depletion plays an important role in the anti-tumor activity of DFMO. Additionally, significant changes in Bcl-2, Bcl-xL, Bax protein levels, activation of caspase-3, and cleavage of poly (ADP-ribose) polymerase were observed, indicating the apoptotic effects of DFMO. We also found that the effect of DFMO was mediated by AP-1 through the activation of upstream JNK via phosphorylation. Moreover, DFMO enhanced the effect of cisplatin, thus showing a possibility of a synergistic effect in treatment. In conclusion, treatment with DFMO alone, or in combination with cisplatin, could be a promising treatment for ovarian cancer.
    Keywords:  AP-1; DFMO; JNK; apoptosis; ovarian cancer; polyamines
    DOI:  https://doi.org/10.3390/ijms221910255
  3. Int J Environ Res Public Health. 2021 Sep 27. pii: 10159. [Epub ahead of print]18(19):
      Biogenic amines (BAs) are natural contaminants of wine that originate from decarboxylase microorganisms involved in fermentation processes. The primary relevance of biogenic amines in food could have both toxic effects on consumers' health (i.e., allergic reactions, nausea, tremors, etc.), if present at high concentrations, and concurrently it can be considered as a remarkable indicator of quality and/or freshness. Therefore, the presence of nine biogenic amines [Tryptamine (TRP), ß-phenylethylamine (ß-PEA), putrescine (PUT), cadaverine (CAD), histamine (HIS), serotonin (SER), tyramine (TYR), spermidine (SPD), and spermine (SPM)] was investigated in red and white wine samples, which differed in the winemaking processes. The qualitative-quantitative determination of BAs was carried out by chromatographic methods (HPLC-UV/Vis and LC-ESI-MS). The analysis showed that both winemaking processes had all the nine BAs considered in the study at different amounts. Data showed that red wines had a higher concentration of PUT (10.52 mg L-1), TYR (7.57 mg L-1), and HIS (6.5 mg L-1), the BAs most involved in food poisoning, compared to white wines, probably related to the different type of fermentation (alcoholic and malolactic).
    Keywords:  alcoholic fermentation; biogenic amines; contaminants; food quality; food safety; malolactic fermentation; microorganisms; red wines; white wines; winemaking processes
    DOI:  https://doi.org/10.3390/ijerph181910159
  4. Int J Mol Sci. 2021 Oct 05. pii: 10775. [Epub ahead of print]22(19):
      The interest in palladium(II) compounds as potential new anticancer drugs has increased in recent years, due to their high toxicity and acquired resistance to platinum(II)-derived agents, namely cisplatin. In fact, palladium complexes with biogenic polyamines (e.g., spermine, Pd2Spm) have been known to display favorable antineoplastic properties against distinct human breast cancer cell lines. This study describes the in vivo response of triple-negative breast cancer (TNBC) tumors to the Pd2Spm complex or to cisplatin (reference drug), compared to tumors in vehicle-treated mice. Both polar and lipophilic extracts of tumors, excised from a MDA-MB-231 cell-derived xenograft mouse model, were characterized through nuclear magnetic resonance (NMR) metabolomics. Interestingly, the results show that polar and lipophilic metabolomes clearly exhibit distinct responses for each drug, with polar metabolites showing a stronger impact of the Pd(II)-complex compared to cisplatin, whereas neither drug was observed to significantly affect tumor lipophilic metabolism. Compared to cisplatin, exposure to Pd2Spm triggered a higher number of, and more marked, variations in some amino acids, nucleotides and derivatives, membrane precursors (choline and phosphoethanolamine), dimethylamine, fumarate and guanidine acetate, a signature that may be relatable to the cytotoxicity and/or mechanism of action of the palladium complex. Putative explanatory biochemical hypotheses are advanced on the role of the new Pd2Spm complex in TNBC metabolism.
    Keywords:  NMR; cisplatin; human triple-negative breast cancer; metabolomics; mice; palladium(II); platinum(II); spermine; xenografts
    DOI:  https://doi.org/10.3390/ijms221910775
  5. Microbiome. 2021 Oct 12. 9(1): 203
       BACKGROUND: Microbiome-metabolome studies of the human gut have been gaining popularity in recent years, mostly due to accumulating evidence of the interplay between gut microbes, metabolites, and host health. Statistical and machine learning-based methods have been widely applied to analyze such paired microbiome-metabolome data, in the hope of identifying metabolites that are governed by the composition of the microbiome. Such metabolites can be likely modulated by microbiome-based interventions, offering a route for promoting gut metabolic health. Yet, to date, it remains unclear whether findings of microbially associated metabolites in any single study carry over to other studies or cohorts, and how robust and universal are microbiome-metabolites links.
    RESULTS: In this study, we addressed this challenge by performing a comprehensive meta-analysis to identify human gut metabolites that can be predicted based on the composition of the gut microbiome across multiple studies. We term such metabolites "robustly well-predicted". To this end, we processed data from 1733 samples from 10 independent human gut microbiome-metabolome studies, focusing initially on healthy subjects, and implemented a machine learning pipeline to predict metabolite levels in each dataset based on the composition of the microbiome. Comparing the predictability of each metabolite across datasets, we found 97 robustly well-predicted metabolites. These include metabolites involved in important microbial pathways such as bile acid transformations and polyamines metabolism. Importantly, however, other metabolites exhibited large variation in predictability across datasets, suggesting a cohort- or study-specific relationship between the microbiome and the metabolite. Comparing taxonomic contributors to different models, we found that some robustly well-predicted metabolites were predicted by markedly different sets of taxa across datasets, suggesting that some microbially associated metabolites may be governed by different members of the microbiome in different cohorts. We finally examined whether models trained on a control group of a given study successfully predicted the metabolite's level in the disease group of the same study, identifying several metabolites where the model was not transferable, indicating a shift in microbial metabolism in disease-associated dysbiosis.
    CONCLUSIONS: Combined, our findings provide a better understanding of the link between the microbiome and metabolites and allow researchers to put identified microbially associated metabolites within the context of other studies. Video abstract.
    Keywords:  Gut microbiome; Machine learning; Meta-analysis; Metabolomics; Metagenomics; Multi-omic
    DOI:  https://doi.org/10.1186/s40168-021-01149-z
  6. Nat Metab. 2021 Oct 14.
      During early mammalian embryogenesis, changes in cell growth and proliferation depend on strict genetic and metabolic instructions. However, our understanding of metabolic reprogramming and its influence on epigenetic regulation in early embryo development remains elusive. Here we show a comprehensive metabolomics profiling of key stages in mouse early development and the two-cell and blastocyst embryos, and we reconstructed the metabolic landscape through the transition from totipotency to pluripotency. Our integrated metabolomics and transcriptomics analysis shows that while two-cell embryos favour methionine, polyamine and glutathione metabolism and stay in a more reductive state, blastocyst embryos have higher metabolites related to the mitochondrial tricarboxylic acid cycle, and present a more oxidative state. Moreover, we identify a reciprocal relationship between α-ketoglutarate (α-KG) and the competitive inhibitor of α-KG-dependent dioxygenases, L-2-hydroxyglutarate (L-2-HG), where two-cell embryos inherited from oocytes and one-cell zygotes display higher L-2-HG, whereas blastocysts show higher α-KG. Lastly, increasing 2-HG availability impedes erasure of global histone methylation markers after fertilization. Together, our data demonstrate dynamic and interconnected metabolic, transcriptional and epigenetic network remodelling during early mouse embryo development.
    DOI:  https://doi.org/10.1038/s42255-021-00464-x
  7. NPJ Parkinsons Dis. 2021 Oct 14. 7(1): 94
      Characterisation and diagnosis of idiopathic Parkinson's disease (iPD) is a current challenge that hampers both clinical assessment and clinical trial development with the potential inclusion of non-PD cases. Here, we used a targeted mass spectrometry approach to quantify 38 metabolites extracted from the serum of 231 individuals. This cohort is currently one of the largest metabolomic studies including iPD patients, drug-naïve iPD, healthy controls and patients with Alzheimer's disease as a disease-specific control group. We identified six metabolites (3-hydroxykynurenine, aspartate, beta-alanine, homoserine, ornithine (Orn) and tyrosine) that are significantly altered between iPD patients and control participants. A multivariate model to predict iPD from controls had an area under the curve (AUC) of 0.905, with an accuracy of 86.2%. This panel of metabolites may serve as a potential prognostic or diagnostic assay for clinical trial prescreening, or for aiding in diagnosing pathological disease in the clinic.
    DOI:  https://doi.org/10.1038/s41531-021-00239-x