bims-polyam Biomed News
on Polyamines
Issue of 2021–08–15
five papers selected by
Sebastian J. Hofer, University of Graz



  1. Mol Cell. 2021 Jul 30. pii: S1097-2765(21)00589-X. [Epub ahead of print]
      Polyamines, small organic polycations, are essential for cell viability, and their physiological levels are homeostatically maintained by post-transcriptional regulation of key biosynthetic enzymes. In addition to de novo synthesis, cells can also take up polyamines; however, identifying cellular polyamine transporters has been challenging. Here we show that the S. cerevisiae HOL1 mRNA is under translational control by polyamines, and we reveal that the encoded membrane transporter Hol1 is a high-affinity polyamine transporter and is required for yeast growth under limiting polyamine conditions. Moreover, we show that polyamine inhibition of the translation factor eIF5A impairs translation termination at a Pro-Ser-stop motif in a conserved upstream open reading frame on the HOL1 mRNA to repress Hol1 synthesis under conditions of elevated polyamines. Our findings reveal that polyamine transport, like polyamine biosynthesis, is under translational autoregulation by polyamines in yeast, highlighting the extensive control cells impose on polyamine levels.
    Keywords:  HOL1; eIF5A; polyamine; spermidine; translation termination; translational control; transporter; uORF
    DOI:  https://doi.org/10.1016/j.molcel.2021.07.020
  2. Anim Biotechnol. 2021 Aug 08. 1-8
      Whether spermine promotes the repair of porcine intestinal epithelium damage through Ras-related C3 botulinum toxin substrate 1 (Rac1)/phospholipase C-γ1 (PLC-γ1) signaling remains unclear. The current study investigated the effects of spermine addition on the proliferation and migration of IPEC-J2 cells and the effects of Rac1/PLC-γ1 signaling on cell migration. We showed that the inhibitors of Rac1 (NSC-23766) and PLC-γ1 (U73122) reduced cell migration and decreased the protein levels of Rac1 and PLC-γ1 in the cells. Moreover, spermine promoted the proliferation and migration of the IPEC-J2 cells, that is, 1 µM spermine exhibited the best effect, and spermine treatment increased the protein levels of Rac1 and PLC-γ1. Further experiments showed that spermine treatment increased cell migration and enhanced Rac1 and PLC-γ1 protein levels, compared with NSC-23766 and U73122 treatments with spermine. In conclusion, spermine treatment promoted the repair of damaged porcine intestinal epithelium by accelerating cell proliferation and migration mediated by Rac1/PLC-γ1 signaling.
    Keywords:  Rac1/PLC-γ1 signaling; Spermine; cell migration; cell proliferation
    DOI:  https://doi.org/10.1080/10495398.2021.1955699
  3. Oncogene. 2021 Aug 10.
      The primary cause of gastric cancer is chronic infection with Helicobacter pylori (H. pylori), particularly the high-risk genotype cagA, and risk modification by human genetic variants. We studied 94 variants in 54 genes for association with gastric cancer, including rs2302615 in ornithine decarboxylase (ODC1), which may affect response to chemoprevention with the ODC inhibitor, eflornithine (difluoromethylornithine; DFMO). Our population-based, case-control study included 1366 individuals (664 gastric cancer cases and 702 controls) from Western Honduras, a high incidence region of Latin America. CagA seropositivity was strongly associated with cancer (OR = 3.6; 95% CI: 2.6, 5.1). The ODC1 variant rs2302615 was associated with gastric cancer (OR = 1.36; p = 0.018) in a model adjusted for age, sex, and CagA serostatus. Two additional single nucleotide polymorphisms (SNPs) in CASP1 (rs530537) and TLR4 (rs1927914) genes were also associated with gastric cancer in univariate models as well as models adjusted for age, sex, and CagA serostatus. The ODC1 SNP association with gastric cancer was stronger in individuals who carried the TT genotype at the associating TLR4 polymorphism, rs1927914 (OR = 1.77; p = 1.85 × 10-3). In conclusion, the ODC1 variant, rs2302615, is associated with gastric cancer and supports chemoprevention trials with DFMO, particularly in individuals homozygous for the T allele at rs1927914.
    DOI:  https://doi.org/10.1038/s41388-021-01981-5
  4. Adv Sci (Weinh). 2021 Aug 08. e2005047
      Neuroblastoma (NB) arises from oncogenic disruption of neural crest (NC) differentiation. Treatment with retinoic acid (RA) to induce differentiation has improved survival in some NB patients, but not all patients respond, and most NBs eventually develop resistance to RA. Loss of the chromatin modifier chromatin assembly factor 1 subunit p150 (CHAF1A) promotes NB cell differentiation; however, the mechanism by which CHAF1A drives NB oncogenesis has remained unexplored. This study shows that CHAF1A gain-of-function supports cell malignancy, blocks neuronal differentiation in three models (zebrafish NC, human NC, and human NB), and promotes NB oncogenesis. Mechanistically, CHAF1A upregulates polyamine metabolism, which blocks neuronal differentiation and promotes cell cycle progression. Targeting polyamine synthesis promotes NB differentiation and enhances the anti-tumor activity of RA. The authors' results provide insight into the mechanisms that drive NB oncogenesis and suggest a rapidly translatable therapeutic approach (DFMO plus RA) to enhance the clinical efficacy of differentiation therapy in NB patients.
    Keywords:  CHAF1A; metabolism; neural crest differentiation; neuroblastoma
    DOI:  https://doi.org/10.1002/advs.202005047