bims-polyam Biomed News
on Polyamines
Issue of 2021–03–28
two papers selected by
Sebastian J. Hofer, University of Graz



  1. Cell Commun Signal. 2021 Mar 22. 19(1): 36
       BACKGROUND: The skin wound healing process is regulated by various cytokines, chemokines, and growth factors. Recent reports have demonstrated that spermine/spermidine (SPD) promote wound healing through urokinase-type plasminogen activator (uPA)/uPA receptor (uPAR) signaling in vitro. Here, we investigated whether the systemic and topical administration of SPD would accelerate the skin wound-repair process in vivo.
    METHODS: A skin wound repair model was established using C57BL/6 J mice. SPD was mixed with white petrolatum for topical administration. For systemic administration, SPD mixed with drinking water was orally administered. Changes in wound size over time were calculated using digital photography.
    RESULTS: Systemic and topical SPD treatment significantly accelerated skin wound healing. The administration of SPD promoted the uPA/uPAR pathway in wound sites. Moreover, topical treatment with SPD enhanced the expression of IL-6 and TNF-α in wound sites. Scratch and cell proliferation assays revealed that SPD administration accelerated scratch wound closure and cell proliferation in vitro.
    CONCLUSION: These results indicate that treatment with SPD promotes skin wound healing through activation of the uPA/uPAR pathway and induction of the inflammatory response in wound sites. The administration of SPD might contribute to new effective treatments to accelerate skin wound healing. Video Abstract.
    Keywords:  Inflammation; Public health; Spermidine (SPD); Urokinase-type plasminogen activator receptor (uPAR); Wound healing
    DOI:  https://doi.org/10.1186/s12964-021-00717-y
  2. Pneumonia (Nathan). 2021 Mar 25. 13(1): 4
      Polyamines are common intracellular metabolites of nearly all cells, and their conservation across a vast diversity of cells suggests critical roles for these compounds in cellular physiology. Most intracellular polyamines are associated with RNA and, subsequently, polyamines have significant effects on transcription and translation. Putrescine and spermidine are the most common polyamines in bacteria. Intracellular polyamine pools in bacteria are tightly controlled by both de novo synthesis and transport. Polyamine homeostasis is emerging as a critical parameter of multiple pathways and physiology with substantial impact on bacterial pathogenesis, including the important human pathogen Streptococcus pneumoniae. Modulation of polyamine metabolism in pneumococci is an important regulator of central metabolism. It has broad effects on virulence factors such as capsule as well as stress responses that ultimately impact the survival of pneumococcus in a host. Polyamine transport protein as a single antigen or in combination with other pneumococcal proteins is shown to be an efficacious immunogen that protects against nasopharyngeal colonization, and invasive disease. A comprehensive description of polyamine metabolic pathways and their intersection with pneumococcal pathogenesis will undoubtedly point to novel approaches for treatment and prevention of pneumococcal disease.
    Keywords:  Autolysis; Capsule; Immunization; Pneumococci; Polyamine; PotD; Stress response; Virulence
    DOI:  https://doi.org/10.1186/s41479-021-00082-x