bims-polyam Biomed News
on Polyamines
Issue of 2020–06–28
eight papers selected by
Sebastian J. Hofer, University of Graz and Alexander Ivanov, Engelhardt Institute of Molecular Biology



  1. Hum Mol Genet. 2020 Jun 26. pii: ddaa121. [Epub ahead of print]
      Tuberous sclerosis complex (TSC) is a rare autosomal dominant neurodevelopmental disorder characterized by variable expressivity. TSC results from inactivating variants within the TSC1 or TSC2 genes, leading to constitutive activation of mechanistic Target of Rapamycin Complex 1 (mTORC1) signaling. Using a mouse model of TSC (Tsc2-RG) in which the Tsc2 gene is deleted in radial glial precursors and their neuronal and glial descendants, we observed increased ornithine decarboxylase (ODC) enzymatic activity and concentration of its product, putrescine. To test if increased ODC activity and dysregulated polyamine metabolism contributes to the neurodevelopmental defects of Tsc2-RG mice, we used pharmacologic and genetic approaches to reduce ODC activity in Tsc2-RG mice, followed by histologic assessment of brain development. We observed that decreasing ODC activity and putrescine levels in Tsc2-RG mice worsened many of the neurodevelopmental phenotypes, including brain growth and neuronal migration defects, astrogliosis and oxidative stress. These data suggest a protective effect of increased ODC activity and elevated putrescine that modify the phenotype in this developmental Tsc2-RG model.
    DOI:  https://doi.org/10.1093/hmg/ddaa121
  2. Nat Commun. 2020 Jun 26. 11(1): 3243
      Dysregulation of polyamine metabolism has been linked to the development of colorectal cancer (CRC), but the underlying mechanism is incompletely characterized. Here, we report that spermine synthase (SMS), a polyamine biosynthetic enzyme, is overexpressed in CRC. Targeted disruption of SMS in CRC cells results in spermidine accumulation, which inhibits FOXO3a acetylation and allows subsequent translocation to the nucleus to transcriptionally induce expression of the proapoptotic protein Bim. However, this induction is blunted by MYC-driven expression of miR-19a and miR-19b that repress Bim production. Pharmacological or genetic inhibition of MYC activity in SMS-depleted CRC cells dramatically induces Bim expression and apoptosis and causes tumor regression, but these effects are profoundly attenuated by silencing Bim. These findings uncover a key survival signal in CRC through convergent repression of Bim expression by distinct SMS- and MYC-mediated signaling pathways. Thus, combined inhibition of SMS and MYC signaling may be an effective therapy for CRC.
    DOI:  https://doi.org/10.1038/s41467-020-17067-x
  3. Microbiol Res. 2020 Jun 11. pii: S0944-5013(20)30389-X. [Epub ahead of print]239 126521
      When fungi are subjected to abiotic stresses, the polyamines (PAs) level alter significantly. Here, we reveal that the polyamine putrescine (Put) could play an important role in alleviating heat stress(HS)-induced accumulation of nitric oxide (NO). Ornithine decarboxylase (ODC)-silenced mutants that were defective in Put biosynthesis exhibited significantly lower NO levels than the wild type (WT) when subjected to HS. With addition of 5 mM exogenous Put, the ODC-silenced mutant endogenous Put obviously increased under HS. At the same time, the contents of NO in the ODC-silenced mutants recovered to approximately WT levels after the administration of exogenous Put. However, the elevated NO content in the ODC-silenced mutants disappeared when exogenous Put and carboxy-PTIO (PTIO is a specific scavenger of NO) were added. Intriguingly, the content of glutamine (Gln) was significantly increased in the ODC-silenced strains. When exogenous Put was added to the WT, the Gln content was significantly decreased. The appearance of a high level of Gln was accompanied by nitrate reductase (NR) activity reduction. Further studies showed that Put influenced ganoderic acids (GAs) biosynthesis by regulating NO content, possibly through NR, under HS. Our work reported that Put regulates HS-induced NO accumulation by changing the cellular Gln level in filamentous fungi. IMPORTANCE: In our present work, it was HS as an ubiquitous environmental stress that affects the important pharmacological secondary metabolite (GAs) content in G. lucidum. Afterwards, we began to explore the network formed between multiple substances to jointly reduce the massive accumulation of GAs content caused by HS. We firstly focused on Put, a substance that enhances resistance to multiple stresses. Further, we discovered an influence on Put could changing the NO content, which has been shown to decrease the accumulation of GAs via HS. Then, we also found the change of NO content may be due to Put level that would affect intracellular Gln content. It has never been reported. And ultimately, it is Put related network that could reduce HS-inducing secondary metabolite mess in fungi.
    Keywords:  Gln; Heat stress; NO; NR; ODC; Putrescine
    DOI:  https://doi.org/10.1016/j.micres.2020.126521
  4. Metabolism. 2020 Jun 17. pii: S0026-0495(20)30161-X. [Epub ahead of print] 154297
       BACKGROUND: Pheochromocytomas (PCCs) and paragangliomas (PGLs) are neuroendocrine tumors that are mostly benign. Metastatic disease does occur in about 10% of cases, and for these patients no effective therapies are available. Patients with mutations in the succinate dehydrogenase subunit B (SDHB) gene tend to have metastatic disease. We hypothesized that a down-regulation in the active succinate dehydrogenase B subunit should result in notable changes in cellular metabolic profile and could present a vulnerability point for successful pharmacological targeting.
    METHODS: Metabolomic analysis was performed on human hPheo1 cells and shRNA SDHB knockdown hPheo1 (hPheo1 SDHB KD) cells. Additional analysis of 115 human fresh frozen samples was conducted. In vitro studies using N1,N11-diethylnorspermine (DENSPM) and N1,N12- diethylspermine (DESPM) treatments were carried out. DENSPM efficacy was assessed in human cell line derived mouse xenografts.
    RESULTS: Components of the polyamine pathway were elevated in hPheo1 SDHB KD cells compared to wild-type cells. A similar observation was noted in SDHx PCC/PGLs tissues compared to their non-mutated counterparts. Specifically, spermidine, and spermine were significantly elevated in SDHx-mutated PCC/PGLs, with a similar trend in hPheo1 SDHB KD cells. Polyamine pathway inhibitors DENSPM and DESPM effectively inhibited growth of hPheo1 cells in vitro as well in mouse xenografts.
    CONCLUSIONS: This study demonstrates overactive polyamine pathway in PCC/PGL with SDHB mutations. Treatment with polyamine pathway inhibitors significantly inhibited hPheo1 cell growth and led to growth suppression in xenograft mice treated with DENSPM. These studies strongly implicate the polyamine pathway in PCC/PGL pathophysiology and provide new foundation for exploring the role for polyamine analogue inhibitors in treating metastatic PCC/PGL. Précis. Cell line metabolomics on hPheo1 cells and PCC/PGL tumor tissue indicate that the polyamine pathway is activated. Polyamine inhibitors in vitro and in vivo demonstrate that polyamine inhibitors are promising for PCC/PGL treatment.
    Keywords:  DENSPM; DESPM; Paraganglioma (PGL); Pheochromocytoma (PCC); Polyamine; SDHB
    DOI:  https://doi.org/10.1016/j.metabol.2020.154297
  5. Invest Ophthalmol Vis Sci. 2020 Jun 03. 61(6): 52
       Purpose: Acrolein, a highly reactive unsaturated aldehyde, is known to facilitate glial cell migration, one of the pathological hallmarks in diabetic retinopathy. However, cellular mechanisms of acrolein generation in retinal glial cells remains elusive. In the present study, we investigated the role and regulation of spermine oxidase (SMOX), one of the enzymes related to acrolein generation, in retinal glial cells under hypoxic condition.
    Methods: Immunofluorescence staining for SMOX was performed using sections of fibrovascular tissues obtained from patients with proliferative diabetic retinopathy. Expression levels of polyamine oxidation enzymes including SMOX were analyzed in rat retinal Müller cell line 5 (TR-MUL5) cells under either normoxic or hypoxic conditions. The transcriptional activity of Smox in TR-MUL5 cells was evaluated using the luciferase assay. Levels of acrolein-conjugated protein, Nε-(3-formyl-3,4-dehydropiperidino) lysine adduct (FDP-Lys), and hydrogen peroxide were measured.
    Results: SMOX was localized in glial cells in fibrovascular tissues. Hypoxia induced SMOX production in TR-MUL5 cells, which was suppressed by silencing of hypoxia-inducible factor-1α (Hif1a), but not Hif2a. Transcriptional activity of Smox was regulated through HIF-1 binding to hypoxia response elements 2, 3, and 4 sites in the promoter region of Smox. Generation of FDP-Lys and hydrogen peroxide increased in TR-MUL5 cells under hypoxic condition, which was abrogated by SMOX inhibitor MDL72527.
    Conclusions: The current data demonstrated that hypoxia regulates production of SMOX, which plays a role in the generation of oxidative stress inducers, through HIF-1α signaling in Müller glial cells under hypoxic condition.
    DOI:  https://doi.org/10.1167/iovs.61.6.52
  6. Sci Rep. 2020 Jun 22. 10(1): 10098
      Many gaps in our understanding of Alzheimer's disease remain despite intense research efforts. One such prominent gap is the mechanism of Tau condensation and fibrillization. One viewpoint is that positively charged Tau is condensed by cytosolic polyanions. However, this hypothesis is likely based on an overestimation of the abundance and stability of cytosolic polyanions and an underestimation of crucial intracellular constituents - the cationic polyamines. Here, we propose an alternative mechanism grounded in cellular biology. We describe extensive molecular dynamics simulations and analysis on physiologically relevant model systems, which suggest that it is not positively charged, unmodified Tau that is condensed by cytosolic polyanions but negatively charged, hyperphosphorylated Tau that is condensed by cytosolic polycations. Our work has broad implications for anti-Alzheimer's research and drug development and the broader field of tauopathies in general, potentially paving the way to future etiologic therapies.
    DOI:  https://doi.org/10.1038/s41598-020-67119-x
  7. J Enzyme Inhib Med Chem. 2020 Dec;35(1): 1345-1358
      Trypanothione synthetase (TryS) produces N1,N8-bis(glutathionyl)spermidine (or trypanothione) at the expense of ATP. Trypanothione is a metabolite unique and essential for survival and drug-resistance of trypanosomatid parasites. In this study, we report the mechanistic and biological characterisation of optimised N5-substituted paullone analogues with anti-TryS activity. Several of the new derivatives retained submicromolar IC50 against leishmanial TryS. The binding mode to TryS of the most potent paullones has been revealed by means of kinetic, biophysical and molecular modelling approaches. A subset of analogues showed an improved potency (EC50 0.5-10 µM) and selectivity (20-35) against the clinically relevant stage of Leishmania braziliensis (mucocutaneous leishmaniasis) and L. infantum (visceral leishmaniasis). For a selected derivative, the mode of action involved intracellular depletion of trypanothione. Our findings shed light on the molecular interaction of TryS with rationally designed inhibitors and disclose a new set of compounds with on-target activity against different Leishmania species.
    Keywords:  Leishmania; Paullone; inhibition mode; thiol; trypanothione synthetase
    DOI:  https://doi.org/10.1080/14756366.2020.1780227
  8. Nat Commun. 2020 Jun 23. 11(1): 3169
      Understanding tumor metabolism holds the promise of new insights into cancer biology, diagnosis and treatment. To assess human cancer metabolism, here we report a method to collect intra-operative samples of blood from an artery directly upstream and a vein directly downstream of a brain tumor, as well as samples from dorsal pedal veins of the same patients. After performing targeted metabolomic analysis, we characterize the metabolites consumed and produced by gliomas in vivo by comparing the arterial supply and venous drainage. N-acetylornithine, D-glucose, putrescine, and L-acetylcarnitine are consumed in relatively large amounts by gliomas. Conversely, L-glutamine, agmatine, and uridine 5-monophosphate are produced in relatively large amounts by gliomas. Further we verify that D-2-hydroxyglutarate (D-2HG) is high in venous plasma from patients with isocitrate dehydrogenases1 (IDH1) mutations. Through these paired comparisons, we can exclude the interpatient variation that is present in plasma samples usually taken from the cubital vein.
    DOI:  https://doi.org/10.1038/s41467-020-16810-8