bims-plasge Biomed News
on Plastid genes
Issue of 2024–05–26
one paper selected by
Vera S. Bogdanova, ИЦиГ СО РАН



  1. Plant J. 2024 May 19.
      Diacylglycerol acyltransferase1 (DGAT1) is the major enzyme that synthesizes triacylglycerols (TAG) during Arabidopsis seed development. Mutant dgat1 seeds possess low oil content in addition to a high polyunsaturated fatty acid (PUFA) composition. Two genes encoding endoplasmic reticulum localized desaturase enzymes, fatty acid desaturase2 (FAD2) and fatty acid desaturase3 (FAD3), were upregulated in both dgat1-1 and dgat1-2 developing seeds. Crosses between both dgat1 mutant alleles and fad2-1 failed to generate plants homozygous for both dgat1 and fad2. Reciprocal crosses with wild-type plants demonstrated that both male and female dgat1 fad2 gametophytes were viable. Siliques from DGAT1/dgat1-1 fad2-1/fad2-1 and dgat1-1/dgat1-1 FAD2/fad2-1 possessed abnormal looking seeds that were arrested in the torpedo growth stage. Approximately 25% of the seeds exhibited this arrested phenotype, genetically consistent with them possessing the double homozygous dgat1 fad2 genotype. In contrast, double homozygous dgat1-1 fad3-2 mutant plants were viable. Seeds from these plants possessed higher levels of 18:2 while their fatty acid content was lower than dgat1 mutant controls. The results are consistent with a model where in the absence of DGAT1 activity, desaturation of fatty acids by FAD2 becomes essential to provide PUFA substrates for phospholipid:diacylglycerol acyltransferase (PDAT) to synthesize TAG. In a dgat1 fad2 mutant, seed development is aborted because TAG is unable to be synthesized by either DGAT1 or PDAT.
    Keywords:  Arabidopsis; Arabidopsis thaliana; desaturases; seed development; seed oil; triacylglycerol
    DOI:  https://doi.org/10.1111/tpj.16805