bims-plasge Biomed News
on Plastid genes
Issue of 2024–04–07
five papers selected by
Vera S. Bogdanova, ИЦиГ СО РАН



  1. Evolution. 2024 Mar 30. pii: qpae053. [Epub ahead of print]
      Gynodioecy, the coexistence of hermaphrodites with females, often reflects conflicts between cytoplasmic male sterility (CMS) genes and nuclear genes restoring male fertility. CMS is frequent in plants, and has been recently discovered in one animal: the freshwater snail Physa acuta. In this system, CMS was linked to a single divergent mitochondrial genome (D), devoid of apparent nuclear restoration. Our study uncovers a second, novel CMS-associated mitogenome (K) in Physa acuta, demonstrating an extraordinary acceleration of molecular evolution throughout the entire K mitochondrial genome, akin to the previously observed pattern in D. This suggests a pervasive occurrence of accelerated evolution in both CMS-associated lineages. Through a 17-generation introgression experiment, we further show that nuclear polymorphisms in K-mitogenome individuals contribute to the restoration of male function in natural populations. Our results underscore shared characteristics in gynodioecy between plants and animals, emphasizing the presence of multiple CMS mitotypes and cyto-nuclear conflicts. This reaffirms the pivotal role of mitochondria in influencing male function and in generating genomic conflicts that impact reproductive processes in animals.
    Keywords:   Physa acuta ; arms-race; cytoplasmic male sterility; gynodioecy; mitochondrial genomes; restoration
    DOI:  https://doi.org/10.1093/evolut/qpae053
  2. Hortic Res. 2024 Mar;11(3): uhae006
      Leaf color is an important agronomic trait in cabbage (Brassica oleracea L. var. capitata), but the detailed mechanism underlying leaf color formation remains unclear. In this study, we characterized a Brassica oleracea yellow-green leaf 2 (BoYgl-2) mutant 4036Y, which has significantly reduced chlorophyll content and abnormal chloroplasts during early leaf development. Genetic analysis revealed that the yellow-green leaf trait is controlled by a single recessive gene. Map-based cloning revealed that BoYgl-2 encodes a novel nuclear-targeted P-type PPR protein, which is absent in the 4036Y mutant. Functional complementation showed that BoYgl-2 from the normal-green leaf 4036G can rescue the yellow-green leaf phenotype of 4036Y. The C-to-U editing efficiency and expression levels of atpF, rps14, petL and ndhD were significantly reduced in 4036Y than that in 4036G, and significantly increased in BoYgl-2 overexpression lines than that in 4036Y. The expression levels of many plastid- and nuclear-encoded genes associated with chloroplast development in BoYgl-2 mutant were also significantly altered. These results suggest that BoYgl-2 participates in chloroplast C-to-U editing and development, which provides rare insight into the molecular mechanism underlying leaf color formation in cabbage.
    DOI:  https://doi.org/10.1093/hr/uhae006
  3. Plant J. 2024 Apr 05.
      The mature seed in legumes consists of an embryo and seed coat. In contrast to knowledge about the embryo, we know relatively little about the seed coat. We analyzed the gene expression during seed development using a panel of cultivated and wild pea genotypes. Gene co-expression analysis identified gene modules related to seed development, dormancy, and domestication. Oxidoreductase genes were found to be important components of developmental and domestication processes. Proteomic and metabolomic analysis revealed that domestication favored proteins involved in photosynthesis and protein metabolism at the expense of seed defense. Seed coats of wild peas were rich in cell wall-bound metabolites and the protective compounds predominated in their seed coats. Altogether, we have shown that domestication altered pea seed development and modified (mostly reduced) the transcripts along with the protein and metabolite composition of the seed coat, especially the content of the compounds involved in defense. We investigated dynamic profiles of selected identified phenolic and flavonoid metabolites across seed development. These compounds usually deteriorated the palatability and processing of the seeds. Our findings further provide resources to study secondary metabolism and strategies for improving the quality of legume seeds which comprise an important part of the human protein diet.
    Keywords:  domestication; gene expression; metabolomics; pea; phenylpropanoid pathway; seed coat; seed proteomics
    DOI:  https://doi.org/10.1111/tpj.16734
  4. aBIOTECH. 2024 Mar;5(1): 71-93
      The garden pea (Pisum sativum L.) is a significant cool-season legume, serving as crucial food sources, animal feed, and industrial raw materials. The advancement of functional genomics over the past two decades has provided substantial theoretical foundations and progress to pea breeding. Notably, the release of the pea reference genome has enhanced our understanding of plant architecture, symbiotic nitrogen fixation (SNF), flowering time, floral organ development, seed development, and stress resistance. However, a considerable gap remains between pea functional genomics and molecular breeding. This review summarizes the current advancements in pea functional genomics and breeding while highlighting the future challenges in pea molecular breeding.
    Keywords:  Agronomic traits; Breeding; Genome study; Pea
    DOI:  https://doi.org/10.1007/s42994-023-00129-1
  5. Sci Rep. 2024 04 01. 14(1): 7636
      Abies koreana E.H.Wilson is an endangered evergreen coniferous tree that is native to high altitudes in South Korea and susceptible to the effects of climate change. Hybridization and reticulate evolution have been reported in the genus; therefore, multigene datasets from nuclear and cytoplasmic genomes are needed to better understand its evolutionary history. Using the Illumina NovaSeq 6000 and Oxford Nanopore Technologies (ONT) PromethION platforms, we generated complete mitochondrial (1,174,803 bp) and plastid (121,341 bp) genomes from A. koreana. The mitochondrial genome is highly dynamic, transitioning from cis- to trans-splicing and breaking conserved gene clusters. In the plastome, the ONT reads revealed two structural conformations of A. koreana. The short inverted repeats (1186 bp) of the A. koreana plastome are associated with different structural types. Transcriptomic sequencing revealed 1356 sites of C-to-U RNA editing in the 41 mitochondrial genes. Using A. koreana as a reference, we additionally produced nuclear and organelle genomic sequences from eight Abies species and generated multiple datasets for maximum likelihood and network analyses. Three sections (Balsamea, Momi, and Pseudopicea) were well grouped in the nuclear phylogeny, but the phylogenomic relationships showed conflicting signals in the mitochondrial and plastid genomes, indicating a complicated evolutionary history that may have included introgressive hybridization. The obtained data illustrate that phylogenomic analyses based on sequences from differently inherited organelle genomes have resulted in conflicting trees. Organelle capture, organelle genome recombination, and incomplete lineage sorting in an ancestral heteroplasmic individual can contribute to phylogenomic discordance. We provide strong support for the relationships within Abies and new insights into the phylogenomic complexity of this genus.
    DOI:  https://doi.org/10.1038/s41598-024-58253-x