bims-plasge Biomed News
on Plastid genes
Issue of 2023–01–22
three papers selected by
Vera S. Bogdanova, ИЦиГ СО РАН



  1. Curr Issues Mol Biol. 2023 Jan 11. 45(1): 663-676
      Earliness in crop plants has a vital role in prevention of heat-induced drought stress and in combating global warming, which is predicted to exacerbate in the near future. Furthermore, earliness may expand production into northern areas or higher altitudes, having relatively shorter growing season and may also expand arable lands to meet global food demands. The primary objective of the present study was to investigate quantitative trait loci (QTLs) for super-earliness and important agro-morphological traits in a recombinant inbred line (RIL) population derived from an interspecific cross. A population of 114 RILs developed through single-seed descent from an interspecific cross involving Pisum sativum L. and P. fulvum Sibth. et Sm. was evaluated to identify QTLs for super-earliness and important agro-morphological traits. A genetic map was constructed with 44 SSRs markers representing seven chromosomes with a total length of 262.6 cM. Of the 14 QTLs identified, two were for super-earliness on LG2, one for plant height on LG3, six for number of pods per plant on LG2, LG4, LG5 and LG6, one for number of seeds per pod on LG6, one for pod length on LG4 and three for harvest index on LG3, LG5, and LG6. AA205 and AA372-1 flanking markers for super-earliness QTLs were suggested for marker-assisted selection (MAS) in pea breeding programs due to high heritability of the trait. This is the first study to map QTLs originating from P. sativum and P. fulvum recently identified species with super-earliness character and the markers (AA205 and AA372-1) linked to QTLs were valuable molecular tools for pea breeding.
    Keywords:  Pisum fulvum; Pisum sativum; QTLs; SSRs; agronomic traits; earliness; morphological traits; recombinant inbred lines (RILs)
    DOI:  https://doi.org/10.3390/cimb45010044
  2. Nat Plants. 2023 Jan 16.
      The genomes of cytoplasmic organelles (mitochondria and plastids) are maternally inherited in most eukaryotes, thus excluding organellar genomes from the benefits of sexual reproduction and recombination. The mechanisms underlying maternal inheritance are largely unknown. Here we demonstrate that two independently acting mechanisms ensure maternal inheritance of the plastid (chloroplast) genome. Conducting large-scale genetic screens for paternal plastid transmission, we discovered that mild chilling stress during male gametogenesis leads to increased entry of paternal plastids into sperm cells and strongly increased paternal plastid transmission. We further show that the inheritance of paternal plastid genomes is controlled by the activity of a genome-degrading exonuclease during pollen maturation. Our data reveal that (1) maternal inheritance breaks down under specific environmental conditions, (2) an organelle exclusion mechanism and a genome degradation mechanism act in concert to prevent paternal transmission of plastid genes and (3) plastid inheritance is determined by complex gene-environment interactions.
    DOI:  https://doi.org/10.1038/s41477-022-01323-7
  3. Cells. 2023 Jan 07. pii: 247. [Epub ahead of print]12(2):
      In flowering plants, pollen development is a key process that is essential for sexual reproduction and seed set. Molecular and genetic studies indicate that pollen development is coordinatedly regulated by both gametophytic and sporophytic factors. Tapetum, the somatic cell layer adjacent to the developing male meiocytes, plays an essential role during pollen development. In the early anther development stage, the tapetal cells secrete nutrients, proteins, lipids, and enzymes for microsporocytes and microspore development, while initiating programmed cell death to provide critical materials for pollen wall formation in the late stage. Therefore, disrupting tapetum specification, development, or function usually leads to serious defects in pollen development. In this review, we aim to summarize the current understanding of tapetum-mediated pollen development and illuminate the underlying molecular mechanism in Arabidopsis thaliana.
    Keywords:  pollen development; pollen wall formation; secretory pathway; tapetum function; tapetum specification
    DOI:  https://doi.org/10.3390/cells12020247