bims-plasge Biomed News
on Plastid genes
Issue of 2022–09–25
three papers selected by
Vera S. Bogdanova, ИЦиГ СО РАН



  1. Genes (Basel). 2022 Aug 26. pii: 1531. [Epub ahead of print]13(9):
      This research aimed to identify quantitative trait loci (QTLs) associated with seed protein concentration in a recombinant inbred line (RIL) population of pea and aimed to validate the identified QTLs using chromosome segment-introgressed lines developed by recurrent backcrossing. PR-25, an RIL population consisting of 108 F7 bulked lines derived from a cross between CDC Amarillo (yellow cotyledon) and CDC Limerick (green cotyledon), was used in this research. The RIL population was genotyped using an Axiom 90K SNP array. A total of 10,553 polymorphic markers were used for linkage map construction, after filtering for segregation distortion and missing values. The linkage map represents 901 unique loci on 11 linkage groups which covered a map distance of 855.3 Centimorgans. Protein concentration was assessed using near-infrared (NIR) spectroscopy of seeds harvested from field trials in seven station-years in Saskatchewan, Canada, during the 2019-2021 field seasons. Three QTLs located on chromosomes 2, 3 and 5 were identified to be associated with seed protein concentration. These QTLs explained 22%, 11% and 17% of the variation for protein concentration, respectively. The identified QTLs were validated by introgression lines, developed by marker-assisted selection of backcross lines for introgression of corresponding chromosome segments (~1/4 chromosome) harboring the QTL regions. Introgression line PR-28-7, not carrying any protein-related QTLs identified in this study, was 4.7% lower in protein concentration than CDC Amarillo, the lower protein parent of PR-25 which carried one identified protein-related QTL. The SNP markers located at the peak of the three identified QTLs will be converted into breeder-friendly KASP assays, which will be used for the selection of high-protein lines from segregating populations.
    Keywords:  Pisum sativum; QTLs; marker-assisted selection; pea; seed protein concentration
    DOI:  https://doi.org/10.3390/genes13091531
  2. Nat Genet. 2022 Sep 22.
      Complete and accurate reference genomes and annotations provide fundamental resources for functional genomics and crop breeding. Here we report a de novo assembly and annotation of a pea cultivar ZW6 with contig N50 of 8.98 Mb, which features a 243-fold increase in contig length and evident improvements in the continuity and quality of sequence in complex repeat regions compared with the existing one. Genome diversity of 118 cultivated and wild pea demonstrated that Pisum abyssinicum is a separate species different from P. fulvum and P. sativum within Pisum. Quantitative trait locus analyses uncovered two known Mendel's genes related to stem length (Le/le) and seed shape (R/r) as well as some candidate genes for pod form studied by Mendel. A pan-genome of 116 pea accessions was constructed, and pan-genes preferred in P. abyssinicum and P. fulvum showed distinct functional enrichment, indicating the potential value of them as pea breeding resources in the future.
    DOI:  https://doi.org/10.1038/s41588-022-01172-2
  3. Theor Appl Genet. 2022 Sep 22.
      Crop wild relatives (CWRs) are weedy and wild relatives of the domesticated and cultivated crops, which usually occur and are maintained in natural forms in their centres of origin. These include the ancestors or progenitors of all cultivated species and comprise rich sources of diversity for many important traits useful in plant breeding. CWRs can play an important role in broadening genetic bases and introgression of economical traits into crops, but their direct use by breeders for varietal improvement program is usually not advantageous due to the presence of crossing or chromosome introgression barriers with cultivated species as well as their high frequencies of agronomically undesirable alleles. Linkage drag may subsequently result in unfavourable traits in the subsequent progeny when segments of the genome linked with quantitative trait loci (QTL), or a phenotype, are introgressed from wild germplasm. Here, we first present an overview in regards to the contribution that wild species have made to improve biotic, abiotic stress tolerances and yield-related traits in crop varieties, and secondly summarise the various challenges which are experienced in interspecific hybridization along with their probable solutions. We subsequently suggest techniques for readily harnessing these wild relatives for fast and effective introgression of exotic alleles in pre-breeding research programs.
    DOI:  https://doi.org/10.1007/s00122-022-04220-x