bims-plasge Biomed News
on Plastid genes
Issue of 2022–09–18
two papers selected by
Vera S. Bogdanova, ИЦиГ СО РАН



  1. BMC Plant Biol. 2022 Sep 13. 22(1): 437
       BACKGROUND: The chloroplast is the organelle responsible for photosynthesis in higher plants. The generation of functional chloroplasts depends on the precise coordination of gene expression in the nucleus and chloroplasts and is essential for the development of plants. However, little is known about nuclear-plastid regulatory mechanisms at the early stage of chloroplast generation in rice.
    RESULTS: In this study, we identified a rice (Oryza sativa) mutant that exhibited albino and seedling-lethal phenotypes and named it ssa1(seedling stage albino1). Transmission electron microscopy (TEM) analysis indicated that the chloroplasts of ssa1 did not have organized thylakoid lamellae and that the chloroplast structure was destroyed. Genetic analysis revealed that the albino phenotypes of ssa1 were controlled by a pair of recessive nuclear genes. Map-based cloning experiments found that SSA1 encoded a pentapeptide repeat (PPR) protein that was allelic to OSOTP51,which was previously reported to participate in Photosystem I (PSI) assembly. The albino phenotype was reversed to the wild type (WT) phenotype when the normal SSA1 sequence was expressed in ssa1 under the drive of the actin promoter. Knockout experiments further created mutants ssa1-2/1-9, which had a phenotype similar to that of ssa1. SSA1 consisted of 7 pentatricopeptide repeat domains and two C-terminal LAGLIDADG tandem sequence motifs and was located in the chloroplast. GUS staining and qRT-PCR analysis showed that SSA1 was mainly expressed in young leaves and stems. In the ssa1 mutants, plastid genes transcribed by plastid-encoded RNA polymerase decreased, while those transcribed by nuclear-encoded RNA polymerase increased at the mRNA level. Loss-of-function SSA1 destroys RNA editing of ndhB-737 and intron splicing of atpF and ycf3-2 in the plastid genome. Yeast two-hybrid and BiFC assays revealed that SSA1 physically interacted with two new RNA editing partners, OsMORF8 and OsTRXz, which have potential functions in RNA editing and chloroplast biogenesis.
    CONCLUSIONS: Rice SSA1 encodes a pentatricopeptide repeat protein, which is targeted to the chloroplast. SSA1 regulates early chloroplast development and plays a critical role in RNA editing and intron splicing in rice. These data will facilitate efforts to further elucidate the molecular mechanism of chloroplast biogenesis.
    Keywords:  Chloroplast; PPR protein; RNA editing; RNA splicing; Rice
    DOI:  https://doi.org/10.1186/s12870-022-03819-y
  2. Plant J. 2022 Sep 13.
      The abundant repeats in plant mitochondrial genomes can cause rapid genome rearrangements and are also a major obstacle in short-read sequencing studies. Nuclear-encoded proteins such as MSH1 are known to suppress the generation of repeat-associated mitochondrial genome variants, but our understanding of these mechanisms has been constrained by the limitations of short-read technologies. Here, we used highly accurate long-read sequencing (PacBio HiFi) to characterize mitochondrial and plastid genome variants in Arabidopsis thaliana msh1 mutant individuals. The HiFi reads provided a global view of recombination dynamics with detailed quantification of parental and crossover recombination products for both large and small repeats. We found that recombination breakpoints were distributed relatively evenly across the length of repeated sequences and detected widespread internal exchanges of sequence variants between pairs of imperfect repeats in the mitochondrial genome of msh1 mutants. Long-read assemblies of mitochondrial genomes from seven other Arabidopsis thaliana wild-type accessions differed by repeat-mediated structural rearrangements similar to those observed in msh1 mutants, but they were all in a simple low-heteroplasmy state. The Arabidopsis plastid genome generally lacks small repeats and exhibited a very different pattern of variant accumulation in msh1 mutants compared with the mitochondrial genome. Our data illustrate the power of HiFi technology in studying repeat-mediated recombination in plant organellar genomes and improved the sequence resolution for recombinational processes suppressed by MSH1.
    Keywords:  Arabidopsis thaliana; gene conversion; long-read sequencing; mitochondrial genome; repeat recombination
    DOI:  https://doi.org/10.1111/tpj.15976