bims-plasge Biomed News
on Plastid genes
Issue of 2021–06–20
four papers selected by
Vera S. Bogdanova, ИЦиГ СО РАН



  1. Theor Appl Genet. 2021 Jun 15.
       KEY MESSAGE: A stable and major QTL, which mapped to an approximately 20.0 cM region on pea chromosome 4, was identified as the most consistent region conferring partial resistance to Aphanomyces euteiches. Aphanomyces root rot (ARR), caused by Aphanomyces euteiches Drechs., is a destructive soilborne disease of field pea (Pisum Sativum L.). No completely resistant pea germplasm is available, and current ARR management strategies rely on partial resistance and fungicidal seed treatments. In this study, an F8 recombinant inbred line population of 135 individuals from the cross 'Reward' (susceptible) × '00-2067' (tolerant) was evaluated for reaction to ARR under greenhouse conditions with the A. euteiches isolate Ae-MDCR1 and over 2 years in a field nursery in Morden, Manitoba. Root rot severity, foliar weight, plant vigor and height were used as estimates of tolerance to ARR. Genotyping was conducted with a 13.2 K single-nucleotide polymorphism (SNP) array and 222 simple sequence repeat (SSR) markers. Statistical analyses of the phenotypic data indicated significant (P < 0.001) genotypic effects and significant G × E interactions (P < 0.05) in all experiments. After filtering, 3050 (23.1%) of the SNP and 30 (13.5%) of the SSR markers were retained for linkage analysis, which distributed 2999 (2978 SNP + 21 SSR) of the markers onto nine linkage groups representing the seven chromosomes of pea. Mapping of quantitative trait loci (QTL) identified 8 major-effect (R2 > 20%), 13 moderate-effect (10% < R2 < 20%) effect and 6 minor-effect (R2 < 10%) QTL. A genomic region on chromosome 4, delimited by the SNP markers PsCam037549_22628_1642 and PsCam026054_14999_2864, was identified as the most consistent region responsible for partial resistance to A. euteiches isolate Ae-MDCR1. Other genomic regions important for resistance were of the order chromosome 5, 6 and 7.
    DOI:  https://doi.org/10.1007/s00122-021-03871-6
  2. Annu Rev Plant Biol. 2021 Jun 17. 72 615-639
      Pollen-pistil interactions serve as important prezygotic reproductive barriers that play a critical role in mate selection in plants. Here, we highlight recent progress toward understanding the molecular basis of pollen-pistil interactions as reproductive isolating barriers. These barriers can be active systems of pollen rejection, or they can result from a mismatch of required male and female factors. In some cases, the barriers are mechanistically linked to self-incompatibility systems, while others represent completely independent processes. Pollen-pistil reproductive barriers can act as soon as pollen is deposited on a stigma, where penetration of heterospecific pollen tubes is blocked by the stigma papillae. As pollen tubes extend, the female transmitting tissue can selectively limit growth by producing cell wall-modifying enzymes and cytotoxins that interact with the growing pollen tube. At ovules, differential pollen tube attraction and inhibition of sperm cell release can act as barriers to heterospecific pollen tubes.
    Keywords:  heterospecific pollen rejection; incongruity; pollen-pistil interactions; reproductive isolating barriers; unilateral incompatibility
    DOI:  https://doi.org/10.1146/annurev-arplant-080620-102159
  3. Sci Rep. 2021 Jun 17. 11(1): 12755
      Pollen storage belongs among the most important activities associated with pollen handling. It overcomes the differences in pollen shedding and ovule receptivity during controlled pollination experiments. It is especially important for species like common juniper (Juniperus communis L.) with an extremely low quality of seeds due to pollination failure. Additionally, it is a substantial part of germplasm preservation programmes in pollen banks. In the present paper, the effect of short-term storage of pollen was studied using pollen samples from five shrubs in an in vitro germination test. Two temperature regimes were tested. The pollen viability of freshly collected pollen varied considerably between individual shrubs, exhibiting 67.3-88.6% germination rate and 248.0-367.3 µm of pollen tubes. Storage at + 4 °C for four months was accompanied by a profound decline in pollen viability. The germination percentage was reduced to 49.2-75.2% and the pollen tube length to 32.5-69.0%, depending on individual shrubs. The corresponding decline in pollen viability characteristics during storage at - 20 °C was only negligible in two of the tested shrubs. In the remaining three shrub samples, an increase in germination percentage was observed. Pollen tube growth responded more sensitively to freezing, but, on average, the decrease in length was lower than that at + 4 °C. The rate of reduction in pollen tube length varied between 11.5 and 45.4%. Cytological events accompanying in vitro germination of freezer-stored pollen exhibited some delay in releasing the exine from pollen grains during the early stages of germination as compared with freshly collected pollen. In conclusion, short-term storage of the common juniper pollen in a freezer is better for the preservation of its viability than storage at + 4 °C.
    DOI:  https://doi.org/10.1038/s41598-021-90942-9
  4. Microbiol Mol Biol Rev. 2021 Jun 16. e0003221
      Escherichia coli acetyl-CoA carboxylase (ACC), the enzyme responsible for synthesis of malonyl-CoA, the building block of fatty acid synthesis, is the paradigm bacterial ACC. Many reports on the structures and stoichiometry of the four subunits comprising the active enzyme as well as on regulation of ACC activity and expression have appeared in the almost 20 years since this subject was last reviewed. This review seeks to update and expand on these reports.
    Keywords:  acetyl-CoA; biotin; carboxylase; fatty acid synthesis; malonyl-CoA
    DOI:  https://doi.org/10.1128/MMBR.00032-21