bims-plasge Biomed News
on Plastid genes
Issue of 2021‒03‒28
two papers selected by
Vera S. Bogdanova
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences


  1. Theor Appl Genet. 2021 Mar 24.
      KEY MESSAGE: Mapping combined with expression and variant analyses in switchgrass, a crop with complex genetics, identified a cluster of candidate genes for leaf wax in a fast-evolving region of chromosome 7K. Switchgrass (Panicum virgatum L.) is a promising warm-season candidate energy crop. It occurs in two ecotypes, upland and lowland, which vary in a number of phenotypic traits, including leaf glaucousness. To initiate trait mapping, two F2 mapping populations were developed by crossing two different F1 sibs derived from a cross between the tetraploid lowland genotype AP13 and the tetraploid upland genotype VS16, and high-density linkage maps were generated. Quantitative trait locus (QTL) analyses of visually scored leaf glaucousness and of hydrophobicity of the abaxial leaf surface measured using a drop shape analyzer identified highly significant colocalizing QTL on chromosome 7K (Chr07K). Using a multipronged approach, we identified a cluster of genes including Pavir.7KG077009, which encodes a Type III polyketide synthase-like protein, and Pavir.7KG013754 and Pavir.7KG030500, two highly similar genes that encode putative acyl-acyl carrier protein (ACP) thioesterases, as strong candidates underlying the QTL. The lack of homoeologs for any of the three genes on Chr07N, the relatively low level of identity with other switchgrass KCS proteins and thioesterases, as well as the organization of the surrounding region suggest that Pavir.7KG077009 and Pavir.7KG013754/Pavir.7KG030500 were duplicated into a fast-evolving chromosome region, which led to their neofunctionalization. Furthermore, sequence analyses showed all three genes to be absent in the two upland compared to the two lowland accessions analyzed. This study provides an example of and practical guide for trait mapping and candidate gene identification in a complex genetic system by combining QTL mapping, transcriptomics and variant analysis.
    DOI:  https://doi.org/10.1007/s00122-021-03798-y
  2. Plant Cell. 2021 Jan 28. pii: koab021. [Epub ahead of print]
      Nuclear and plastid (chloroplast) genomes experience different mutation rates, levels of selection, and transmission modes, yet key cellular functions depend on their coordinated interactions. Functionally related proteins often show correlated changes in rates of sequence evolution across a phylogeny [evolutionary rate covariation (ERC)], offering a means to detect previously unidentified suites of coevolving and cofunctional genes. We performed phylogenomic analyses across angiosperm diversity, scanning the nuclear genome for genes that exhibit ERC with plastid genes. As expected, the strongest hits were highly enriched for genes encoding plastid-targeted proteins, providing evidence that cytonuclear interactions affect rates of molecular evolution at genome-wide scales. Many identified nuclear genes functioned in post-transcriptional regulation and the maintenance of protein homeostasis (proteostasis), including protein translation (in both the plastid and cytosol), import, quality control, and turnover. We also identified nuclear genes that exhibit strong signatures of coevolution with the plastid genome, but their encoded proteins lack organellar-targeting annotations, making them candidates for having previously undescribed roles in plastids. In sum, our genome-wide analyses reveal that plastid-nuclear coevolution extends beyond the intimate molecular interactions within chloroplast enzyme complexes and may be driven by frequent rewiring of the machinery responsible for maintenance of plastid proteostasis in angiosperms.
    DOI:  https://doi.org/10.1093/plcell/koab021