bims-plasge Biomed News
on Plastid genes
Issue of 2021–02–28
four papers selected by
Vera S. Bogdanova, ИЦиГ СО РАН



  1. Front Plant Sci. 2021 ;12 627501
      The pentatricopeptide repeat (PPR) proteins constitute one of the largest nuclear-encoded protein families in higher plants, with over 400 members in most sequenced plant species. The molecular functions of these proteins and their physiological roles during plant growth and development have been widely studied. Generally, there is mounting evidence that PPR proteins are involved in the post-transcriptional regulation of chloroplast and/or mitochondrial genes, including RNA maturation, editing, intron splicing, transcripts' stabilization, and translation initiation. The cooperative action of RNA metabolism has profound effects on the biogenesis and functioning of both chloroplasts and mitochondria and, consequently, on the photosynthesis, respiration, and development of plants and their environmental responses. In this review, we summarize the latest research on PPR proteins, specifically how they might function in the chloroplast, by documenting their mechanism of molecular function, their corresponding RNA targets, and their specific effects upon chloroplast biogenesis and host organisms.
    Keywords:  PPR protein; biogenesis; chloroplast; gene expression; metabolism
    DOI:  https://doi.org/10.3389/fpls.2021.627501
  2. Plant Mol Biol. 2021 Feb 27.
       KEY MESSAGE: Recombinations between the parental genomes produced a novel mitochondrial genome in the cytoplasmic male sterile Brassica juncea cybrid Og1. A mitochondrial stoichiometric shift greatly reduced the molecule containing male-sterility-inducing orf138 gene leading to reversion to male fertility. An improved, chlorosis-corrected, cytoplasmic male sterile Brassica juncea cybrid Og1 derived from Ogura cytoplasm shows frequent reversion to male fertility. To determine the nature of mitochondrial recombination in the cybrid and to uncover the molecular mechanism of male fertility reversion, we sequenced the mitochondrial genomes of Og1, its isonuclear parental lines (OgRLM and Brassica juncea RLM198) and the revertant line (Og1-rt). Assembly of Og1 mitochondrial genome gave two circular molecules, Og1a (250.999 kbp) and Og1b (96.185 kbp) sharing two large direct repeat regions capable of recombining to form a single circular molecule. Og1a contains all essential mitochondrial genes, but the male-sterility-causing orf138 was uniquely present in Og1b along with 16 other complete or partial genes already represented in Og1a. Eleven and four recombinations between the parental mitochondrial genomes produced the Og1a and the Og1b molecules, respectively. Five genes were duplicated within Og1a, of which trnfM was inherited from both the parents while the other four genes, atp4, cox1 nad4L and trnM, were inherited from RLM198. RFLP analysis revealed that orf138-containing molecules were less abundant than Og1a in the male-sterile plants while og1b bearing molecules were undetectable in the revertant line. However, orf138 transcripts were amplified in RT-PCR and were also detected in northern blots revealing that Og1b molecules are not completely lost in the revertant plants. This is the first report where the mitochondrial genome of a cybrid is compared with its actual parents. The findings are discussed in the light of previous reports on mitochondrial genome recombination in cybrids.
    Keywords:  Brassica; Cytoplasmic male sterility; Fertility reversion; Mitochondrial recombination; RFLP; Stoichiometry
    DOI:  https://doi.org/10.1007/s11103-021-01132-0
  3. Plant Cell. 2021 Feb 24. pii: koab052. [Epub ahead of print]
      The insertion of organellar membrane proteins with the correct topology requires the following: First, the proteins must contain topogenic signals for translocation across and insertion into the membrane. Second, proteinaceous complexes in the cytoplasm, membrane, and lumen of organelles are required to drive this process. Many complexes required for the intracellular distribution of membrane proteins have been described, but the signals and components required for the insertion of plastidic β-barrel-type proteins into the outer membrane are largely unknown. The discovery of common principles is difficult, as only a few plastidic β-barrel proteins exist. Here, we provide evidence that the plastidic outer envelope β-barrel proteins OEP21, OEP24, and OEP37 from pea (Pisum sativum) and Arabidopsis thaliana contain information defining the topology of the protein. The information required for translocation of pea proteins across the outer envelope membrane is present within the six N-terminal β-strands. This process requires the action of TOC (translocon of the outer chloroplast membrane). After translocation into the intermembrane space, β-barrel proteins interact with TOC75-V, as exemplified by OEP37 and P39, and are integrated into the membrane. The membrane insertion of plastidic β-barrel proteins is affected by mutation of the last β-strand, suggesting that this strand contributes to the insertion signal. These findings shed light on the elements and complexes involved in plastidic β-barrel protein import.
    DOI:  https://doi.org/10.1093/plcell/koab052
  4. Ann Bot. 2021 Feb 23. pii: mcab031. [Epub ahead of print]
       BACKGROUND AND AIMS: Genetically controlled self-incompatibility (SI) mechanisms constrain selfing and thus have contributed to the evolutionary diversity of flowering plants. In homomorphic gametophytic SI (GSI) and homomorphic sporophytic SI (SSI), genetic control is usually by a single multi-allelic locus S. Both GSI and SSI prevent self pollen tubes reaching the ovary and so are pre-zygotic in action. In contrast, in taxa with late-acting self-incompatibility (LSI), rejection is often post-zygotic, since self-pollen tubes grow to the ovary where fertilization may occur prior to floral abscission. Alternatively, lack of self fruit set could be due to early-acting inbreeding depression (EID). The aim of our study was to investigate mechanisms underlying lack of selfed fruit set in Handroanthus heptaphyllus in order to assess the likelihood of LSI versus EID.
    METHODS: We employed four full sib diallels to study the genetic control of LSI in Handroanthus heptaphyllus using a precociously flowering variant. We also used fluorescence microscopy to study the incidence of ovule penetration by pollen tubes in pistils that abscised following pollination or initiated fruits.
    KEY RESULTS: All diallels showed reciprocally cross-incompatible full-sibs (RCI), reciprocally cross compatible full-sibs (RCC), and non-reciprocally compatible full-sibs (NRC) in almost equal proportions. There was no significant difference between the incidence of ovule penetrations in abscised pistils following self- and cross-incompatible pollinations, but those in successful cross pollinations were around twofold greater.
    CONCLUSIONS: A genetic model postulating a single S locus with four s alleles, one of which, in the maternal parent, is dominant to the other three, will produce RCI, RCC and NRC situations each at 33 %, consistent with our diallel results. We favour this simple genetic control over an early-acting inbreeding depression (EID) explanation since none of our pollinations, successful or unsuccessful, resulted in partial embryo development, as would be expected under a whole genome EID effect.
    Keywords:   Handroanthus heptaphyllus (Bignoniaceae); Full sib diallel crosses; late-acting self-incompatibility
    DOI:  https://doi.org/10.1093/aob/mcab031