bims-plasge Biomed News
on Plastid genes
Issue of 2020–11–08
two papers selected by
Vera S. Bogdanova, ИЦиГ СО РАН



  1. Theor Appl Genet. 2020 Oct 31.
       KEY MESSAGE: Eleven new major resistance genes for lettuce downy mildew were introgressed from wild Lactuca species and mapped to small regions in the lettuce genome. Downy mildew, caused by the oomycete pathogen Bremia lactucae Regel, is the most important disease of lettuce (Lactuca sativa L.). The most effective method to control this disease is by using resistant cultivars expressing dominant resistance genes (Dm genes). In order to counter changes in pathogen virulence, multiple resistance genes have been introgressed from wild species by repeated backcrosses to cultivated lettuce, resulting in numerous near-isogenic lines (NILs) only differing for small chromosome regions that are associated with resistance. Low-pass, whole genome sequencing of 11 NILs was used to identify the chromosome segments introgressed from the wild donor species. This located the candidate chromosomal positions for resistance genes as well as additional segments. F2 segregating populations derived from these NILs were used to genetically map the resistance genes to one or two loci in the lettuce reference genome. Precise knowledge of the location of new Dm genes provides the foundation for marker-assisted selection to breed cultivars with multiple genes for resistance to downy mildew.
    DOI:  https://doi.org/10.1007/s00122-020-03711-z
  2. Plant Divers. 2020 Oct;42(5): 370-375
      Interspecific hybridization plays an important role in rice breeding by broadening access to desirable traits such as disease resistance and improving yields. However, interspecific hybridization is often hindered by hybrid sterility, linkage drag, and distorted segregation. To mine for favorable genes from Oryza glaberrima, we cultivated a series of BC4 introgression lines (ILs) of O. glaberrima in the japonica rice variety background (Dianjingyou 1) in which the IL-2769 (BC4F10) showed longer sterile lemmas, wider grains and spreading panicles compared with its receptor parent, suggesting that linkage drag may have occurred. Based on the BC5F2 population, a hybrid sterility locus, S20, a long sterile lemma locus, G1-g, and a new grain width quantitative trait locus (QTL), qGW7, were mapped in the linkage region about 15 centimorgan (cM) from the end of the short arm of chromosome 7. The hybrid sterility locus S20 from O. glaberrima eliminated male gametes of Oryza sativa, and male gametes carrying the alleles of O. sativa in the heterozygotes were aborted completely. In addition, the homozygotes presented a genotype of O. glaberrima, and homozygous O. sativa were not produced. Surprisingly, the linked traits G1-g and qGW7 showed similar segregation distortion. These results indicate that S20 was responsible for the linkage drag. As a large number of detected hybrid sterility loci are widely distributed on rice chromosomes, we suggest that hybrid sterility loci are the critical factors for the linkage drag in interspecific and subspecific hybridization of rice.
    Keywords:  Hybrid sterility; Interspecific hybridization; Linkage drag; Segregation distortion
    DOI:  https://doi.org/10.1016/j.pld.2020.07.003