bims-plasge Biomed News
on Plastid genes
Issue of 2020–05–03
one paper selected by
Vera S. Bogdanova, ИЦиГ СО РАН



  1. Genome Biol. 2020 Apr 29. 21(1): 104
       BACKGROUND: Polyploidy is ubiquitous in eukaryotic plant and fungal lineages, and it leads to the co-existence of several copies of similar or related genomes in one nucleus. In plants, polyploidy is considered a major factor in successful domestication. However, polyploidy challenges chromosome folding architecture in the nucleus to establish functional structures.
    RESULTS: We examine the hexaploid wheat nuclear architecture by integrating RNA-seq, ChIP-seq, ATAC-seq, Hi-C, and Hi-ChIP data. Our results highlight the presence of three levels of large-scale spatial organization: the arrangement into genome territories, the diametrical separation between facultative and constitutive heterochromatin, and the organization of RNA polymerase II around transcription factories. We demonstrate the micro-compartmentalization of transcriptionally active genes determined by physical interactions between genes with specific euchromatic histone modifications. Both intra- and interchromosomal RNA polymerase-associated contacts involve multiple genes displaying similar expression levels.
    CONCLUSIONS: Our results provide new insights into the physical chromosome organization of a polyploid genome, as well as on the relationship between epigenetic marks and chromosome conformation to determine a 3D spatial organization of gene expression, a key factor governing gene transcription in polyploids.
    Keywords:  DNA loops; Genome territories; Hi-C; Hi-ChIP; Transcription factories
    DOI:  https://doi.org/10.1186/s13059-020-01998-1