bims-pimaco Biomed News
on PI3K and MAPK signalling in colorectal cancer
Issue of 2024‒08‒11
five papers selected by
Lucas B. Zeiger



  1. Nat Chem Biol. 2024 Aug 05.
      Clinical resistance to rat sarcoma virus (Ras)-G12C inhibitors is a challenge. A subpopulation of cancer cells has been shown to undergo genomic and transcriptional alterations to facilitate drug resistance but the immediate adaptive effects on Ras signaling in response to these drugs at the single-cell level is not well understood. Here, we used Ras biosensors to profile the activity and signaling environment of endogenous Ras at the single-cell level. We found that a subpopulation of KRas-G12C cells treated with Ras-G12C-guanosine-diphosphate inhibitors underwent adaptive signaling and metabolic changes driven by wild-type Ras at the Golgi and mutant KRas at the mitochondria, respectively. Our Ras biosensors identified major vault protein as a mediator of Ras activation through its scaffolding of Ras signaling pathway components and metabolite channels. Overall, methods including ours that facilitate direct analysis on the single-cell level can report the adaptations that subpopulations of cells adopt in response to cancer therapies, thus providing insight into drug resistance.
    DOI:  https://doi.org/10.1038/s41589-024-01684-4
  2. Nat Cancer. 2024 Aug 05.
      Combination approaches are needed to strengthen and extend the clinical response to KRASG12C inhibitors (KRASG12Ci). Here, we assessed the antitumor responses of KRASG12C mutant lung and colorectal cancer models to combination treatment with a SOS1 inhibitor (SOS1i), BI-3406, plus the KRASG12C inhibitor, adagrasib. We found that responses to BI-3406 plus adagrasib were stronger than to adagrasib alone, comparable to adagrasib with SHP2 (SHP2i) or EGFR inhibitors and correlated with stronger suppression of RAS-MAPK signaling. BI-3406 plus adagrasib treatment also delayed the emergence of acquired resistance and elicited antitumor responses from adagrasib-resistant models. Resistance to KRASG12Ci seemed to be driven by upregulation of MRAS activity, which both SOS1i and SHP2i were found to potently inhibit. Knockdown of SHOC2, a MRAS complex partner, partially restored response to KRASG12Ci treatment. These results suggest KRASG12C plus SOS1i to be a promising strategy for treating both KRASG12Ci naive and relapsed KRASG12C-mutant tumors.
    DOI:  https://doi.org/10.1038/s43018-024-00800-6
  3. Cancer Discov. 2024 Aug 12.
      Current treatments for KRAS-mutant colorectal cancers (CRCs) are often limited by cellular plasticity and rewiring responses. Here we describe a promising therapeutic strategy that simultaneously targets epigenetic and oncogenic signals. Specifically, we show that inhibitors of the histone methyltransferase, EZH2, synergize with various RAS pathway inhibitors and promote dramatic tumor regression in vivo. Together these agents cooperatively suppress WNT-driven transcription and drive CRCs into a more differentiated cell state by inducing the Groucho/TLE corepressor, TLE4, along with a network of WNT pathway inhibitors and intestinal differentiation proteins. However, these agents also induce the pro-apoptotic protein BMF, which subsequently kills these more differentiated cells. Accordingly, cell death can be prevented by activating β-catenin, blocking differentiation, or by ablating BMF expression. Collectively, these studies reveal a new therapeutic approach for treating KRAS-mutant CRCs and illustrate a critical convergence of EZH2 and RAS on oncogenic WNT signals, intestinal differentiation, and apoptosis.
    DOI:  https://doi.org/10.1158/2159-8290.CD-23-0866
  4. Nature. 2024 Aug 07.
      Colorectal carcinoma (CRC) is a common cause of mortality1, but a comprehensive description of its genomic landscape is lacking2-9. Here we perform whole-genome sequencing of 2,023 CRC samples from participants in the UK 100,000 Genomes Project, thereby providing a highly detailed somatic mutational landscape of this cancer. Integrated analyses identify more than 250 putative CRC driver genes, many not previously implicated in CRC or other cancers, including several recurrent changes outside the coding genome. We extend the molecular pathways involved in CRC development, define four new common subgroups of microsatellite-stable CRC based on genomic features and show that these groups have independent prognostic associations. We also characterize several rare molecular CRC subgroups, some with potential clinical relevance, including cancers with both microsatellite and chromosomal instability. We demonstrate a spectrum of mutational profiles across the colorectum, which reflect aetiological differences. These include the role of Escherichia colipks+ colibactin in rectal cancers10 and the importance of the SBS93 signature11-13, which suggests that diet or smoking is a risk factor. Immune-escape driver mutations14 are near-ubiquitous in hypermutant tumours and occur in about half of microsatellite-stable CRCs, often in the form of HLA copy number changes. Many driver mutations are actionable, including those associated with rare subgroups (for example, BRCA1 and IDH1), highlighting the role of whole-genome sequencing in optimizing patient care.
    DOI:  https://doi.org/10.1038/s41586-024-07747-9
  5. Transl Oncol. 2024 Aug 06. pii: S1936-5233(24)00205-5. [Epub ahead of print]48 102078
      INTRODUCTION: Glutamine is a non-essential amino acid that is critical for cell growth. However, the differential metabolism of l-glutamine in metastatic versus primary colorectal cancer (CRC) has not been evaluated adequately.MATERIALS AND METHODS: Differential expression of glutamine-related genes was determined in primary versus metastatic CRC. Univariate Cox regression and hierarchical clustering were used to generate a gene signature for prognostication. Untargeted metabolomics and 18O based fluxomics were used to identify differential metabolite levels and energy turnover in the paired primary (SW480) and metastatic (SW620) CRC cells. Western blot and qRT-PCR were used to validate differential gene expression. Subcellular localization of E-cadherin was determined by immunocytochemistry. Lipid droplets were visualized with Nile Red.
    RESULTS: The GO term "Glutamine metabolism" was significantly enriched in metastatic versus primary tumors. Supporting this, SW620 cells showed decreased membrane localization of E-cadherin and increased motility upon l-Glutamine withdrawal. A glutamine related signature associated with worse prognosis was identified and validated in multiple datasets. A fluxomics assay revealed a slower TCA cycle in SW480 and SW620 cells upon l-Glutamine withdrawal. SW620 cells, however, could maintain high ATP levels. Untargeted metabolomics indicated the preferential metabolism of fatty acids in SW620 but not SW480 cells. Lipids were mainly obtained from the environment rather than by de novo synthesis.
    CONCLUSIONS: Metastatic CRC cells can display aberrant glutamine metabolism. We show for the first time that upon l-glutamine withdrawal, SW620 (but not SW480) cells were metabolically plastic and could metabolize lipids for survival and cellular motility.
    Keywords:  Colorectal cancer; L-Glutamine; Lipid metabolism; Metabolic plasticity
    DOI:  https://doi.org/10.1016/j.tranon.2024.102078