J Biol Chem. 2022 Jun 10. pii: S0021-9258(22)00562-2. [Epub ahead of print] 102121
We have previously shown that the serine/threonine kinase PKCα triggers MAPK/ERK kinase (MEK)-dependent G1→S cell cycle arrest in intestinal epithelial cells, characterized by downregulation of cyclin D1 and inhibitor of DNA-binding protein 1 (Id1) and upregulation of the cyclin-dependent kinase inhibitor p21Cip1. Here, we use pharmacological inhibitors, genetic approaches, siRNA-mediated knockdown, and immunoprecipitation to further characterize anti-proliferative ERK signaling in intestinal cells. We show that PKCα signaling intersects the Ras-Raf-MEK-ERK kinase cascade at the level of Ras small GTPases, and that anti-proliferative effects of PKCα require active Ras, Raf, MEK and ERK, core ERK pathway components that are also essential for pro-proliferative ERK signaling induced by epidermal growth factor (EGF). However, PKCα-induced anti-proliferative signaling differs from EGF signaling in that it is independent of the Ras guanine nucleotide exchange factors (Ras-GEFs), SOS1/2, and involves prolonged rather than transient ERK activation. PKCα forms complexes with A-Raf, B-Raf and C-Raf that dissociate upon pathway activation, and all three Raf isoforms can mediate PKCα-induced anti-proliferative effects. At least two PKCα-ERK pathways that collaborate to promote growth arrest were identified: one pathway requiring the Ras-GEF, RasGRP3, and H-Ras, leads to p21Cip1 upregulation, while additional pathway(s) mediate PKCα-induced cyclin D1 and Id1 downregulation. PKCα also induces ERK-dependent SOS1 phosphorylation, indicating possible negative crosstalk between anti-proliferative and growth-promoting ERK signaling. Importantly, the spatio-temporal activation of PKCα and ERK in the intestinal epithelium in vivo supports the physiological relevance of these pathways and highlights the importance of anti-proliferative ERK signaling to tissue homeostasis in the intestine.
Keywords: EGF; ERK; H-Ras protein; Id1; PKCα; Raf kinase; RasGRP3; cyclin D1; growth arrest; p21(Cip1)