bims-pimaco Biomed News
on PI3K and MAPK signalling in colorectal cancer
Issue of 2021–09–12
four papers selected by
Lucas B. Zeiger, CRUK Scotland Institute, Beatson Institute for Cancer Research



  1. Nat Commun. 2021 Sep 09. 12(1): 5248
      The HRAS, NRAS, and KRAS genes are collectively mutated in a fifth of all human cancers. These mutations render RAS GTP-bound and active, constitutively binding effector proteins to promote signaling conducive to tumorigenic growth. To further elucidate how RAS oncoproteins signal, we mined RAS interactomes for potential vulnerabilities. Here we identify EFR3A, an adapter protein for the phosphatidylinositol kinase PI4KA, to preferentially bind oncogenic KRAS. Disrupting EFR3A or PI4KA reduces phosphatidylinositol-4-phosphate, phosphatidylserine, and KRAS levels at the plasma membrane, as well as oncogenic signaling and tumorigenesis, phenotypes rescued by tethering PI4KA to the plasma membrane. Finally, we show that a selective PI4KA inhibitor augments the antineoplastic activity of the KRASG12C inhibitor sotorasib, suggesting a clinical path to exploit this pathway. In sum, we have discovered a distinct KRAS signaling axis with actionable therapeutic potential for the treatment of KRAS-mutant cancers.
    DOI:  https://doi.org/10.1038/s41467-021-25523-5
  2. Sci Rep. 2021 Sep 09. 11(1): 17925
      Ras-specific proteases to degrade RAS within cancer cells are under active development as an innovative strategy to treat tumorigenesis. The naturally occurring biological toxin effector called RAS/RAP1-specific endopeptidase (RRSP) is known to cleave all RAS within a cell, including HRAS, KRAS, NRAS and mutant KRAS G13D. Yet, our understanding of the mechanisms by which RRSP drives growth inhibition are unknown. Here, we demonstrate, using isogenic mouse fibroblasts expressing a single isoform of RAS or mutant KRAS, that RRSP equally inactivates all isoforms of RAS as well as the major oncogenic KRAS mutants. To investigate how RAS processing might lead to varying outcomes in cell fate within cancer cells, we tested RRSP against four colorectal cancer cell lines with a range of cell fates. While cell lines highly susceptible to RRSP (HCT116 and SW1463) undergo apoptosis, RRSP treatment of GP5d and SW620 cells induces G1 cell cycle arrest. In some cell lines, growth effects were dictated by rescued expression of the tumor suppressor protein p27 (Kip1). The ability of RRSP to irreversibly inhibit cancer cell growth highlights the antitumor potential of RRSP, and further warrants investigation as a potential anti-tumor therapeutic.
    DOI:  https://doi.org/10.1038/s41598-021-97422-0
  3. Front Mol Biosci. 2021 ;8 706650
      HRAS, NRAS and KRAS, collectively referred to as oncogenic RAS, are the most frequently mutated driver proto-oncogenes in cancer. Oncogenic RAS aberrantly rewires metabolic pathways promoting the generation of intracellular reactive oxygen species (ROS). In particular, lipids have gained increasing attention serving critical biological roles as building blocks for cellular membranes, moieties for post-translational protein modifications, signaling molecules and substrates for ß-oxidation. However, thus far, the understanding of lipid metabolism in cancer has been hampered by the lack of sensitive analytical platforms able to identify and quantify such complex molecules and to assess their metabolic flux in vitro and, even more so, in primary tumors. Similarly, the role of ROS in RAS-driven cancer cells has remained elusive. On the one hand, ROS are beneficial to the development and progression of precancerous lesions, by upregulating survival and growth factor signaling, on the other, they promote accumulation of oxidative by-products that decrease the threshold of cancer cells to undergo ferroptosis. Here, we overview the recent advances in the study of the relation between RAS and lipid metabolism, in the context of different cancer types. In particular, we will focus our attention on how lipids and oxidative stress can either promote or sensitize to ferroptosis RAS driven cancers. Finally, we will explore whether this fine balance could be modulated for therapeutic gain.
    Keywords:  RAS oncogenes; ferroptosis; lipid metabolism; oxidative stress; tumorigenesis
    DOI:  https://doi.org/10.3389/fmolb.2021.706650
  4. Nature. 2021 09;597(7875): 250-255
      The cellular landscape of the human intestinal tract is dynamic throughout life, developing in utero and changing in response to functional requirements and environmental exposures. Here, to comprehensively map cell lineages, we use single-cell RNA sequencing and antigen receptor analysis of almost half a million cells from up to 5 anatomical regions in the developing and up to 11 distinct anatomical regions in the healthy paediatric and adult human gut. This reveals the existence of transcriptionally distinct BEST4 epithelial cells throughout the human intestinal tract. Furthermore, we implicate IgG sensing as a function of intestinal tuft cells. We describe neural cell populations in the developing enteric nervous system, and predict cell-type-specific expression of genes associated with Hirschsprung's disease. Finally, using a systems approach, we identify key cell players that drive the formation of secondary lymphoid tissue in early human development. We show that these programs are adopted in inflammatory bowel disease to recruit and retain immune cells at the site of inflammation. This catalogue of intestinal cells will provide new insights into cellular programs in development, homeostasis and disease.
    DOI:  https://doi.org/10.1038/s41586-021-03852-1