bims-pimaco Biomed News
on PI3K and MAPK signalling in colorectal cancer
Issue of 2021–03–07
thirteen papers selected by
Lucas B. Zeiger, CRUK Scotland Institute, Beatson Institute for Cancer Research



  1. Cancers (Basel). 2021 Feb 27. pii: 1000. [Epub ahead of print]13(5):
      The intestinal epithelium fulfils pleiotropic functions in nutrient uptake, waste elimination, and immune surveillance while also forming a barrier against luminal toxins and gut-resident microbiota. Incessantly barraged by extraneous stresses, the intestine must continuously replenish its epithelial lining and regenerate the full gamut of specialized cell types that underpin its functions. Homeostatic remodelling is orchestrated by the intestinal stem cell (ISC) niche: a convergence of epithelial- and stromal-derived cues, which maintains ISCs in a multipotent state. Following demise of homeostatic ISCs post injury, plasticity is pervasive among multiple populations of reserve stem-like cells, lineage-committed progenitors, and/or fully differentiated cell types, all of which can contribute to regeneration and repair. Failure to restore the epithelial barrier risks seepage of toxic luminal contents, resulting in inflammation and likely predisposing to tumour formation. Here, we explore how homeostatic niche-signalling pathways are subverted in tumorigenesis, enabling ISCs to gain autonomy from niche restraints ("ISC emancipation") and transform into cancer stem cells capable of driving tumour initiation, progression, and therapy resistance. We further consider the implications of the pervasive plasticity of the intestinal epithelium for the trajectory of colorectal cancer, the emergence of distinct molecular subtypes, the propensity to metastasize, and the development of effective therapeutic strategies.
    Keywords:  BMP; Notch; Wnt; YAP; cancer stem cells (CSCs); colorectal cancer (CRC); consensus molecular subtypes (CMS); intestinal stem cell (ISC) niche; intestinal stem cells (ISCs); regeneration
    DOI:  https://doi.org/10.3390/cancers13051000
  2. Elife. 2021 Mar 01. pii: e63326. [Epub ahead of print]10
      The mechanistic target of rapamycin complex 1 (mTORC1) stimulates a coordinated anabolic program in response to growth-promoting signals. Paradoxically, recent studies indicate that mTORC1 can activate the transcription factor ATF4 through mechanisms distinct from its canonical induction by the integrated stress response (ISR). However, its broader roles as a downstream target of mTORC1 are unknown. Therefore, we directly compared ATF4-dependent transcriptional changes induced upon insulin-stimulated mTORC1 signaling to those activated by the ISR. In multiple mouse embryo fibroblast (MEF) and human cancer cell lines, the mTORC1-ATF4 pathway stimulated expression of only a subset of the ATF4 target genes induced by the ISR, including genes involved in amino acid uptake, synthesis, and tRNA charging. We demonstrate that ATF4 is a metabolic effector of mTORC1 involved in both its established role in promoting protein synthesis and in a previously unappreciated function for mTORC1 in stimulating cellular cystine uptake and glutathione synthesis.
    Keywords:  cancer biology; cell biology; human; mouse; rat
    DOI:  https://doi.org/10.7554/eLife.63326
  3. Cancers (Basel). 2021 Feb 23. pii: 927. [Epub ahead of print]13(4):
      The ATP-competitive inhibitors of Hsp90 have been tested predominantly in kinase addicted cancers; however, they have had limited success. A mechanistic connection between Hsp90 and oncogenic K-Ras is not known. Here, we show that K-Ras selectivity is enabled by the loss of the K-Ras membrane nanocluster modulator galectin-3 downstream of the Hsp90 client HIF-1α. This mechanism suggests a higher drug sensitivity in the context of KRAS mutant, HIF-1α-high and/or Gal3-high cancer cells, such as those found, in particular, in pancreatic adenocarcinoma. The low toxicity of conglobatin further indicates a beneficial on-target toxicity profile for Hsp90/Cdc37 interface inhibitors. We therefore computationally screened >7 M compounds, and identified four novel small molecules with activities of 4 μM-44 μM in vitro. All of the compounds were K-Ras selective, and potently decreased the Hsp90 client protein levels without inducing the heat shock response. Moreover, they all inhibited the 2D proliferation of breast, pancreatic, and lung cancer cell lines. The most active compounds from each scaffold, furthermore, significantly blocked 3D spheroids and the growth of K-Ras-dependent microtumors. We foresee new opportunities for improved Hsp90/Cdc37 interface inhibitors in cancer and other aging-associated diseases.
    Keywords:  Cdc37; Hsp90; K-Ras; cancer; drug development; nanoclustering
    DOI:  https://doi.org/10.3390/cancers13040927
  4. Theranostics. 2021 ;11(8): 3595-3606
      Background: In hypoxic tumors, positive feedback between oncogenic KRAS and HIF-1α involves impressive metabolic changes correlating with drug resistance and poor prognosis in colorectal cancer. Up to date, designed KRAS-targeting molecules do not show clear benefits in patient overall survival (POS) so pharmacological modulation of aberrant tricarboxylic acid (TCA) cycle in hypoxic cancer has been proposed as a metabolic vulnerability of KRAS-driven tumors. Methods: Annexin V-FITC and cell viability assays were carried out in order to verify vitamin C citotoxicity in KRAS mutant SW480 and DLD1 as well as in Immortalized Human Colonic Epithelial Cells (HCEC). HIF1a expression and activity were determined by western blot and functional analysis assays. HIF1a direct targets GLUT1 and PDK1 expression was checked using western blot and qRT-PCR. Inmunohistochemical assays were perfomed in tumors derived from murine xenografts in order to validate previous observations in vivo. Vitamin C dependent PDH expression and activity modulation were detected by western blot and colorimetric activity assays. Acetyl-Coa levels and citrate synthase activity were assessed using colorimetric/fluorometric activity assays. Mitochondrial membrane potential (Δψ) and cell ATP levels were assayed using fluorometric and luminescent test. Results: PDK-1 in KRAS mutant CRC cells and murine xenografts was downregulated using pharmacological doses of vitamin C through the proline hydroxylation (Pro402) of the Hypoxia inducible factor-1(HIF-1)α, correlating with decreased expression of the glucose transporter 1 (GLUT-1) in both models. Vitamin C induced remarkable ATP depletion, rapid mitochondrial Δψ dissipation and diminished pyruvate dehydrogenase E1-α phosphorylation at Serine 293, then boosting PDH and citrate synthase activity. Conclusion: We report a striking and previously non reported role of vitamin C in the regulation of the pyruvate dehydrogenase (PDH) activity, then modulating the TCA cycle and mitochondrial metabolism in KRAS mutant colon cancer. Potential impact of vitamin C in the clinical management of anti-EGFR chemoresistant colorectal neoplasias should be further considered.
    Keywords:  KRAS; PDK-1; cancer; chemoresistance; hypoxia; metabolism; vitamin C
    DOI:  https://doi.org/10.7150/thno.51265
  5. FEBS Open Bio. 2021 Mar 04.
      Acquired and intrinsic radioresistance remains a major challenge during the treatment of patients with colorectal cancer (CRC). Aberrant cholesterol metabolism precipitates the development of multiple cancers. Here, we report that exogenous or endogenous cholesterol enhances the radioresistance of CRC cells. Cholesterol addition protects CRC cells against irradiation in vitro and in vivo. SREBP1/FASN signaling rapidly increased in response to radiation stimuli, resulting in cholesterol accumulation, cell proliferation, and inhibition of apoptosis. Blocking the SREBP1/FASN pathway impeded cholesterol synthesis and accelerated radiation-induced CRC cell death. Our findings provide novel insights into the role of the SREBP1/FASN/cholesterol axis in radiotherapy and suggest that it may be a potential target for CRC treatment. Clinically, our results suggest that CRC patients undergoing radiotherapy may benefit from a lowered cholesterol intake.
    Keywords:  SREBP1/FASN signaling; cholesterol; colorectal cancer; radioresistance
    DOI:  https://doi.org/10.1002/2211-5463.13137
  6. Int J Mol Sci. 2021 Feb 11. pii: 1784. [Epub ahead of print]22(4):
      The mechanistic target of rapamycin (mTOR) is a master regulator of cell growth, proliferation, and metabolism by integrating various environmental inputs including growth factors, nutrients, and energy, among others. mTOR signaling has been demonstrated to control almost all fundamental cellular processes, such as nucleotide, protein and lipid synthesis, autophagy, and apoptosis. Over the past fifteen years, mapping the network of the mTOR pathway has dramatically advanced our understanding of its upstream and downstream signaling. Dysregulation of the mTOR pathway is frequently associated with a variety of human diseases, such as cancers, metabolic diseases, and cardiovascular and neurodegenerative disorders. Besides genetic alterations, aberrancies in post-translational modifications (PTMs) of the mTOR components are the major causes of the aberrant mTOR signaling in a number of pathologies. In this review, we summarize current understanding of PTMs-mediated regulation of mTOR signaling, and also update the progress on targeting the mTOR pathway and PTM-related enzymes for treatment of human diseases.
    Keywords:  human diseases; inhibitors; mTOR; post-translational modifications
    DOI:  https://doi.org/10.3390/ijms22041784
  7. Fac Rev. 2020 ;9 31
      In over two decades since the discovery of phosphatase and tensin homologue deleted on chromosome 10 (PTEN), nearly 18,000 publications have attempted to elucidate its functions and roles in normal physiology and disease. The frequent disruption of PTEN in cancer cells was a strong indication that it had critical roles in tumour suppression. Germline PTEN mutations have been identified in patients with heterogeneous tumour syndromic diseases, known as PTEN hamartoma tumour syndrome (PHTS), and in some individuals with autism spectrum disorders (ASD). Today we know that by limiting oncogenic signalling through the phosphoinositide 3-kinase (PI3K) pathway, PTEN governs a number of processes including survival, proliferation, energy metabolism, and cellular architecture. Some of the most exciting recent advances in the understanding of PTEN biology and signalling have revisited its unappreciated roles as a protein phosphatase, identified non-enzymatic scaffold functions, and unravelled its nuclear function. These discoveries are certain to provide a new perspective on its full tumour suppressor potential, and knowledge from this work will lead to new anti-cancer strategies that exploit PTEN biology. In this review, we will highlight some outstanding questions and some of the very latest advances in the understanding of the tumour suppressor PTEN.
    Keywords:  PI3K pathway; PTEN signalling; cancer; nuclear PTEN; tumour suppression
    DOI:  https://doi.org/10.12703/r/9-31
  8. Proc Natl Acad Sci U S A. 2021 Mar 09. pii: e2021945118. [Epub ahead of print]118(10):
      Mechanistic Target of Rapamycin Complex 1 (mTORC1) is a central regulator of cell growth and metabolism that senses and integrates nutritional and environmental cues with cellular responses. Recent studies have revealed critical roles of mTORC1 in RNA biogenesis and processing. Here, we find that the m6A methyltransferase complex (MTC) is a downstream effector of mTORC1 during autophagy in Drosophila and human cells. Furthermore, we show that the Chaperonin Containing Tailless complex polypeptide 1 (CCT) complex, which facilitates protein folding, acts as a link between mTORC1 and MTC. The mTORC1 activates the chaperonin CCT complex to stabilize MTC, thereby increasing m6A levels on the messenger RNAs encoding autophagy-related genes, leading to their degradation and suppression of autophagy. Altogether, our study reveals an evolutionarily conserved mechanism linking mTORC1 signaling with m6A RNA methylation and demonstrates their roles in suppressing autophagy.
    Keywords:  autophagy; chaperonin containing Tailless complex polypeptide 1 (CCT); m6A RNA methylation; m6A methyltransferase complex (MTC); mTORC1
    DOI:  https://doi.org/10.1073/pnas.2021945118
  9. Antioxidants (Basel). 2021 Feb 16. pii: 302. [Epub ahead of print]10(2):
      Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is known as a tumor suppressor gene that is frequently mutated in numerous human cancers and inherited syndromes. PTEN functions as a negative regulator of PI3K/Akt signaling pathway by dephosphorylating phosphatidylinositol (3, 4, 5)-trisphosphate (PIP3) to phosphatidylinositol (4, 5)-bisphosphate (PIP2), which leads to the inhibition of cell growth, proliferation, cell survival, and protein synthesis. PTEN contains a cysteine residue in the active site that can be oxidized by peroxides, forming an intramolecular disulfide bond between Cys124 and Cys71. Redox regulation of PTEN by reactive oxygen species (ROS) plays a crucial role in cellular signaling. Peroxiredoxins (Prxs) are a superfamily of peroxidase that catalyzes reduction of peroxides and maintains redox homeostasis. Mammalian Prxs have 6 isoforms (I-VI) and can scavenge cellular peroxides. It has been demonstrated that Prx I can preserve and promote the tumor-suppressive function of PTEN by preventing oxidation of PTEN under benign oxidative stress via direct interaction. Also, Prx II-deficient cells increased PTEN oxidation and insulin sensitivity. Furthermore, Prx III has been shown to protect PTEN from oxidation induced by 15s-HpETE and 12s-HpETE, these are potent inflammatory and pro-oxidant mediators. Understanding the tight connection between PTEN and Prxs is important for providing novel therapies. Herein, we summarized recent studies focusing on the relationship of Prxs and the redox regulation of PTEN.
    Keywords:  PTEN; peroxiredoxins; redox regulation
    DOI:  https://doi.org/10.3390/antiox10020302
  10. Sci Immunol. 2021 Mar 01. pii: eabd5515. [Epub ahead of print]6(57):
      Mutations in the RAS oncogenes occur in multiple cancers, and ways to target these mutations has been the subject of intense research for decades. Most of these efforts are focused on conventional small-molecule drugs rather than antibody-based therapies because the RAS proteins are intracellular. Peptides derived from recurrent RAS mutations, G12V and Q61H/L/R, are presented on cancer cells in the context of two common human leukocyte antigen (HLA) alleles, HLA-A3 and HLA-A1, respectively. Using phage display, we isolated single-chain variable fragments (scFvs) specific for each of these mutant peptide-HLA complexes. The scFvs did not recognize the peptides derived from the wild-type form of RAS proteins or other related peptides. We then sought to develop an immunotherapeutic agent that was capable of killing cells presenting very low levels of these RAS-derived peptide-HLA complexes. Among many variations of bispecific antibodies tested, one particular format, the single-chain diabody (scDb), exhibited superior reactivity to cells expressing low levels of neoantigens. We converted the scFvs to this scDb format and demonstrated that they were capable of inducing T cell activation and killing of target cancer cells expressing endogenous levels of the mutant RAS proteins and cognate HLA alleles. CRISPR-mediated alterations of the HLA and RAS genes provided strong genetic evidence for the specificity of the scDbs. Thus, this approach could be applied to other common oncogenic mutations that are difficult to target by conventional means, allowing for more specific anticancer therapeutics.
    DOI:  https://doi.org/10.1126/sciimmunol.abd5515
  11. Proc Natl Acad Sci U S A. 2021 Mar 09. pii: e2020187118. [Epub ahead of print]118(10):
      Identification of common patterns of cancer metabolic reprogramming could assist the development of new therapeutic strategies. Recent attention in this field has focused on identifying and targeting signal transduction pathways that interface directly with major metabolic control processes. In the current study we demonstrate the importance of signaling by the diphosphoinositol pentakisphosphate kinases (PPIP5Ks) to the metabolism and proliferation of the HCT116 colonic tumor cell line. We observed reciprocal cross talk between PPIP5K catalytic activity and glucose metabolism, and we show that CRISPR-mediated PPIP5K deletion suppresses HCT116 cell proliferation in glucose-limited culture conditions that mimic the tumor cell microenvironment. We conducted detailed, global metabolomic analyses of wild-type and PPIP5K knockout (KO) cells by measuring both steady-state metabolite levels and by performing isotope tracing experiments. We attribute the growth-impaired phenotype to a specific reduction in the supply of precursor material for de novo nucleotide biosynthesis from the one carbon serine/glycine pathway and the pentose phosphate pathway. We identify two enzymatic control points that are inhibited in the PPIP5K KO cells: serine hydroxymethyltransferase and phosphoribosyl pyrophosphate synthetase, a known downstream target of AMP-regulated protein kinase, which we show is noncanonically activated independently of adenine nucleotide status. Finally, we show the proliferative defect in PPIP5K KO cells can be significantly rescued either by addition of inosine monophosphate or a nucleoside mixture or by stable expression of PPIP5K activity. Overall, our data describe multiple, far-reaching metabolic consequences for metabolic supervision by PPIP5Ks in a tumor cell line.
    Keywords:  PPIP5K; inositol pyrophosphates; nucleotide synthesis; pentose phosphate pathway; serine–glycine–one-carbon metabolism
    DOI:  https://doi.org/10.1073/pnas.2020187118
  12. Curr Treat Options Oncol. 2021 Feb 27. 22(4): 30
       OPINION STATEMENT: BRAF mutations are present in up to 8% of human cancers, and comprise a viable therapeutic target in many patients harboring these mutations. Specific BRAF-targeted therapies, such as vemurafenib, dabrafenib, and encorafenib, have transformed treatment of many BRAF-mutated cancers, producing meaningful clinical benefit with more tolerable safety profiles compared to prior standard-of-care treatments. BRAF inhibitors were first approved for use in metastatic melanoma, although resistance almost always limited their long-term effectiveness. Combination therapy with BRAF and MEK inhibitors has proven effective in delaying the onset of resistance, and produces additional clinical benefit across cancers. Although not promising initially in treatment of BRAF-mutated colorectal carcinoma, BRAF inhibitors in colorectal cancer were successfully combined with EGFR inhibitors, resulting in significant treatment response. Refining the use of BRAF and MEK inhibitors in less common tumor types (and for non-V600 mutations) and delaying the development of resistance remain pertinent future considerations in treating BRAF-mutated cancers. In this review, we will discuss the prevalence of BRAF mutations across human cancers and evidence on the efficacy and safety of current management strategies for various BRAF-mutant solid tumors.
    Keywords:  BRAF; Colon cancer; Dabrafenib; Encorafenib; Melanoma; Mutation; NSCLC; Vemurafenib
    DOI:  https://doi.org/10.1007/s11864-021-00827-2
  13. Cancers (Basel). 2021 Feb 28. pii: 1011. [Epub ahead of print]13(5):
       BACKGROUND: Despite substantial progress made in the last decades in colorectal cancer (CRC) research, new treatment approaches are still needed to improve patients' long-term survival. To date, the promising strategy to target tumor angiogenesis metabolically together with a sensitization of CRC to chemo- and/or radiotherapy by PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-3) inhibition has never been tested. Therefore, initial evaluation and validation of newly developed compounds such as KAN0438757 and their effects on CRC cells are crucial steps preceding to in vivo preclinical studies, which in turn may consolidate new therapeutic targets.
    MATERIALS AND METHODS: The efficiency of KAN0438757 to block PFKFB3 expression and translation in human CRC cells was evaluated by immunoblotting and real-time PCR. Functional in vitro assays assessed the effects of KAN0438757 on cell viability, proliferation, survival, adhesion, migration and invasion. Additionally, we evaluated the effects of KAN0438757 on matched patient-derived normal and tumor organoids and its systemic toxicity in vivo in C57BL6/N mice.
    RESULTS: High PFKFB3 expression is correlated with a worse survival in CRC patients. KAN0438757 reduces PFKFB3 protein expression without affecting its transcriptional regulation. Additionally, a concentration-dependent anti-proliferative effect was observed. The migration and invasion capacity of cancer cells were significantly reduced, independent of the anti-proliferative effect. When treating colonic patient-derived organoids with KAN0438757 an impressive effect on tumor organoids growth was apparent, surprisingly sparing normal colonic organoids. No high-grade toxicity was observed in vivo.
    CONCLUSION: The PFKFB3 inhibitor KAN0438757 significantly reduced CRC cell migration, invasion and survival. Moreover, on patient-derived cancer organoids KAN0438757 showed significant effects on growth, without being overly toxic in normal colon organoids and healthy mice. Our findings strongly encourage further translational studies to evaluate KAN0438757 in CRC therapy.
    Keywords:  KAN0438757; PFKFB3; colon cancer; glycolysis; intestinal organoids; rectal cancer
    DOI:  https://doi.org/10.3390/cancers13051011