bims-pimaco Biomed News
on PI3K and MAPK signalling in colorectal cancer
Issue of 2020–11–15
thirteen papers selected by
Lucas B. Zeiger, CRUK Scotland Institute, Beatson Institute for Cancer Research



  1. Nat Commun. 2020 Nov 13. 11(1): 5755
      Translatome reprogramming is a primary determinant of protein levels during stimuli adaptation. This raises the question: what are the translatome remodelers that reprogram protein output to activate biochemical adaptations. Here, we identify a translational pathway that represses metabolism to safeguard genome integrity. A system-wide MATRIX survey identified the ancient eIF5A as a pH-regulated translation factor that responds to fermentation-induced acidosis. TMT-pulse-SILAC analysis identified several pH-dependent proteins, including the mTORC1 suppressor Tsc2 and the longevity regulator Sirt1. Sirt1 operates as a pH-sensor that deacetylates nuclear eIF5A during anaerobiosis, enabling the cytoplasmic export of eIF5A/Tsc2 mRNA complexes for translational engagement. Tsc2 induction inhibits mTORC1 to suppress cellular metabolism and prevent acidosis-induced DNA damage. Depletion of eIF5A or Tsc2 leads to metabolic re-initiation and proliferation, but at the expense of incurring substantial DNA damage. We suggest that eIF5A operates as a translatome remodeler that suppresses metabolism to shield the genome.
    DOI:  https://doi.org/10.1038/s41467-020-19602-2
  2. Oncogene. 2020 Nov 12.
      Although the Wnt/β-catenin pathway plays a central role in the carcinogenesis and maintenance of colorectal cancer (CRC), attempts to target the pathway itself have not been very successful. MyD88, an adaptor protein of the TLR/IL-1β signaling, has been implicated in the integrity of the intestines as well as in their tumorigenesis. In this study, we aimed to clarify the mechanisms by which epithelial MyD88 contributes to intestinal tumor formation and to address whether MyD88 can be a therapeutic target of CRC. Conditional knockout of MyD88 in intestinal epithelial cells (IECs) reduced tumor formation in Apc+/Δ716 mice, accompanied by decreased proliferation and enhanced apoptosis of tumor epithelial cells. Mechanistically, the MyD88 loss caused inactivation of the JNK-mTORC1, NF-κB, and Wnt/β-catenin pathways in tumor cells. Induction of MyD88 knockout in the intestinal tumor-derived organoids, but not in the normal IEC-derived organoids, induced apoptosis and reduced their growth. Treatment with the MyD88 inhibitor ST2825 also suppressed the growth of the intestinal tumor-derived organoids. Knockdown of MYD88 in human CRC cell lines with mutations in APC or CTNNB1 induced apoptosis and reduced their proliferation as well. These results indicate that MyD88 loss is synthetic lethal with mutational activation of the Wnt/β-catenin signaling in intestinal tumor epithelial cells. Inhibition of MyD88 signaling can thus be a novel therapeutic strategy for familial adenomatous polyposis (FAP) as well as for colorectal cancer harboring mutations in the Wnt/β-catenin signaling.
    DOI:  https://doi.org/10.1038/s41388-020-01541-3
  3. Front Med. 2020 Nov 09.
      The mammalian target of rapamycin (mTOR) critically regulates several essential biological functions, such as cell growth, metabolism, survival, and immune response by forming two important complexes, namely, mTOR complex 1 (mTORC1) and complex 2 (mTORC2). mTOR signaling is often dysregulated in cancers and has been considered an attractive cancer therapeutic target. Great efforts have been made to develop efficacious mTOR inhibitors, particularly mTOR kinase inhibitors, which suppress mTORC1 and mTORC2; however, major success has not been achieved. With the strong scientific rationale, the intriguing question is why cancers are insensitive or not responsive to mTOR-targeted cancer therapy in clinics. Beyond early findings on induced activation of PI3K/Akt, MEK/ERK, and Mnk/eIF4E survival signaling pathways that compromise the efficacy of rapalog-based cancer therapy, recent findings on the essential role of GSK3 in mediating cancer cell response to mTOR inhibitors and mTORC1 inhibition-induced upregulation of PD-L1 in cancer cells may provide some explanations. These new findings may also offer us the opportunity to rationally utilize mTOR inhibitors in cancer therapy. Further elucidation of the biology of complicated mTOR networks may bring us the hope to develop effective therapeutic strategies with mTOR inhibitors against cancer.
    Keywords:  E3 ubiquitin ligase; GSK3; PD-L1; cancer therapy; mTOR; protein degradation; resistance
    DOI:  https://doi.org/10.1007/s11684-020-0812-7
  4. Cell Death Dis. 2020 Nov 12. 11(11): 976
      DEP-domain containing mTOR-interacting protein (DEPTOR), a natural mTOR inhibitor, has essential roles in several processes, including cell growth, metabolism, apoptosis, and immunity. DEPTOR expression has been shown to be diversely controlled at transcriptional levels in cell- and context-specific manners. However, whether there is a general mechanism for the regulation of DEPTOR expression remains largely unknown. Here, we report that DEPTOR is a downstream target of the tumor suppressor, p53, whose activity is positively correlated with DEPTOR expression both in vitro in cell cultures and in vivo in mouse tissues. Mechanistically, p53 directly binds to the DEPTOR promoter and transactivates its expression. Depletion of the p53-binding site on the DEPTOR promoter by CRISPR-Cas9 technology decreases DEPTOR expression and promotes cell proliferation and survival by activating AKT signaling. Importantly, inhibition of AKT by small molecular inhibitors or genetic knockdown abrogates the induction of cell growth and survival induced by deletion of the p53-binding region on the DEPTOR promoter. Furthermore, p53, upon activation by the genotoxic agent doxorubicin, induces DEPTOR expression, leading to cancer cell resistance to doxorubicin. Together, DEPTOR is a direct p53 downstream target and contributes to p53-mediated inhibition of cell proliferation, survival, and chemosensitivity.
    DOI:  https://doi.org/10.1038/s41419-020-03185-3
  5. Redox Biol. 2020 Nov 03. pii: S2213-2317(20)30985-X. [Epub ahead of print]38 101780
      K-ras mutations are major genetic events that drive cancer development associated with aggressive malignant phenotypes, while expression of the immune checkpoint molecule PD-L1 plays a key role in cancer evasion of the immune surveillance that also profoundly affects the patient outcome. However, the relationship between K-ras oncogenic signal and PD-L1 expressions as an important area that requires further investigation. Using both in vitro and in vivo experimental models of K-ras-driven cancer, we found that oncogenic K-ras significantly enhanced PD-L1 expression through a redox-mediated mechanism. Activation of K-rasG12V promoted ROS generation and induced FGFR1 expression, leading to a significant upregulation of PD-L1. We further showed that exogenous ROS such as hydrogen peroxide alone was sufficient to activate FGFR1 and induce PD-L1, while antioxidants could largely abrogate PD-L1 expression in K-ras mutant cells, indicating a critical role of redox regulation. Importantly, genetic knockout of FGFR1 led to a decrease in PD-L1 expression, and impaired tumor growth in vivo due to a significant increase of T cell infiltration in the tumor tissues and thus enhanced T-cell-mediated tumor suppression. Our study has identified a novel mechanism by which K-ras promotes PD-L1 expression, and suggests that modulation of ROS or inhibition of the FGFR1 pathway could be a novel strategy to abrogate PD-L1-mediated immunosuppression and thus potentially improve the efficacy of immunotherapy in K-ras-driven cancers.
    Keywords:  FGFR1; K-ras; PD-L1; ROS
    DOI:  https://doi.org/10.1016/j.redox.2020.101780
  6. Cancers (Basel). 2020 Nov 11. pii: E3336. [Epub ahead of print]12(11):
      An altered redox status accompanied by an elevated generation of reactive oxygen/nitrogen species (ROS/RNS) has been implicated in a number of diseases including colorectal cancer (CRC). CRC, being one of the most common cancers worldwide, has been reported to be associated with multiple environmental and lifestyle factors (e.g., dietary habits, obesity, and physical inactivity) and harboring heightened oxidative stress that results in genomic instability. Although under normal condition ROS regulate many signal transduction pathways including cell proliferation and survival, overwhelming of the antioxidant capacity due to metabolic abnormalities and oncogenic signaling leads to a redox adaptation response that imparts drug resistance. Nevertheless, excessive reliance on elevated production of ROS makes the tumor cells increasingly vulnerable to further ROS insults, and the abolition of such drug resistance through redox perturbation could be instrumental to preferentially eliminate them. The goal of this review is to demonstrate the evidence that links redox stress to the development of CRC and assimilate the most up-to-date information that would facilitate future investigation on CRC-associated redox biology. Concomitantly, we argue that the exploitation of this distinct biochemical property of CRC cells might offer a fresh avenue to effectively eradicate these cells.
    Keywords:  antioxidant; colorectal cancer (CRC); drug resistance; oxidative stress; reactive oxygen/nitrogen species (ROS/RNS); redox perturbation
    DOI:  https://doi.org/10.3390/cancers12113336
  7. Nat Commun. 2020 Nov 13. 11(1): 5762
      Occurrence of Colorectal cancer (CRC) is relevant with gut microbiota. However, role of IRF3, a key signaling mediator in innate immune sensing, has been barely investigated in CRC. Here, we unexpectedly found that the IRF3 deficient mice are hyper-susceptible to the development of intestinal tumor in AOM/DSS and Apcmin/+ models. Genetic ablation of IRF3 profoundly promotes the proliferation of intestinal epithelial cells via aberrantly activating Wnt signaling. Mechanically, IRF3 in resting state robustly associates with the active β-catenin in the cytoplasm, thus preventing its nuclear translocation and cell proliferation, which can be relieved upon microbe-induced activation of IRF3. In accordance, the survival of CRC is clinically correlated with the expression level of IRF3. Therefore, our study identifies IRF3 as a negative regulator of the Wnt/β-catenin pathway and a potential prognosis marker for Wnt-related tumorigenesis, and describes an intriguing link between gut microbiota and CRC via the IRF3-β-catenin axis.
    DOI:  https://doi.org/10.1038/s41467-020-19627-7
  8. Ann Oncol. 2020 Nov 10. pii: S0923-7534(20)43124-2. [Epub ahead of print]
       BACKGROUND: The phase III SANDPIPER study assessed taselisib (GDC-0032), a potent, selective PI3K inhibitor, plus fulvestrant in estrogen receptor-positive, HER2-negative, PIK3CA-mutant locally advanced or metastatic breast cancer.
    PATIENTS AND METHODS: Postmenopausal women with disease recurrence/progression during/after an aromatase inhibitor were randomized 2:1 to receive taselisib (4 mg; taselisib arm) or placebo (placebo arm) plus fulvestrant (500 mg). Stratification factors were visceral disease, endocrine sensitivity, and geographic region. Patients with PIK3CA-mutant tumors (central cobas® PIK3CA Mutation Test), were randomized separately from those without detectable mutations. The primary endpoint was investigator-assessed progression-free survival (INV-PFS) in patients with PIK3CA-mutant tumors. Secondary endpoints included objective response rate, overall survival, clinical benefit rate, duration of objective response, PFS by blinded independent central review (BICR-PFS), safety, and time to deterioration in health-related quality of life.
    RESULTS: The PIK3CA-mutant intention-to-treat population comprised 516 patients (placebo arm: n = 176; taselisib arm: n = 340). INV-PFS was significantly improved in the taselisib (7.4 months [95% CI, 7.26-9.07]) vs placebo arm (5.4 months [95% CI, 3.68-7.29]) (stratified HR 0.70; 95% CI, 0.56-0.89; P = 0.0037) and confirmed by BICR-PFS (HR 0.66). Secondary endpoints, including objective response rate, clinical benefit rate, and duration of objective response, showed consistent improvements in the taselisib arm. Safety was assessed in all randomized patients who received at least one dose of taselisib/placebo or fulvestrant regardless of PIK3CA-mutation status (n = 629). Serious adverse events were lower in the placebo vs taselisib arm (8.9% vs 32.0%). There were more discontinuations (placebo arm: 2.3%; taselisib arm: 16.8%) and dose reductions (placebo arm: 2.3%; taselisib arm: 36.5%) in the taselisib arm.
    CONCLUSION: SANDPIPER met its primary endpoint; however, the combination of taselisib plus fulvestrant has no clinical utility given its safety profile and modest clinical benefit.
    Keywords:  PI3K inhibitors; PIK3CA mutations; advanced breast cancer; taselisib
    DOI:  https://doi.org/10.1016/j.annonc.2020.10.596
  9. BMC Cancer. 2020 Nov 12. 20(1): 1099
       BACKGROUND: Identifying the mutation status of KRAS is important for optimizing treatment in patients with colorectal cancer (CRC). The aim of this study was to investigate the predictive value of haematological parameters and serum tumour markers (STMs) for KRAS gene mutations.
    METHODS: The clinical data of patients with colorectal cancer from January 2014 to December 2018 were retrospectively collected, and the associations between KRAS mutations and other indicators were analysed. Receiver operating characteristic (ROC) curve analysis was performed to quantify the predictive value of these factors. Univariate and multivariate logistic regression models were applied to identify predictors of KRAS mutations by calculating the odds ratios (ORs) and their corresponding 95% confidence intervals (CIs).
    RESULTS: KRAS mutations were identified in 276 patients (35.2%). ROC analysis revealed that age, CA12-5, AFP, SCC, CA72-4, CA15-3, FERR, CYFRA21-1, MCHC, and tumor location could not predict KRAS mutations (P = 0.154, 0.177, 0.277, 0.350, 0.864, 0.941, 0.066, 0.279, 0.293, and 0.053 respectively), although CEA, CA19-9, NSE and haematological parameter values showed significant predictive value (P = 0.001, < 0.001, 0.043 and P = 0.003, < 0.001, 0.001, 0.031, 0.030, 0.016, 0.015, 0.019, and 0.006, respectively) but without large areas under the curve. Multivariate logistic regression analysis showed that CA19-9 was significantly associated with KRAS mutations and was the only independent predictor of KRAS positivity (P = 0.016).
    CONCLUSIONS: Haematological parameters and STMs were related to KRAS mutation status, and CA19-9 was an independent predictive factor for KRAS gene mutations. The combination of these clinical factors can improve the ability to identify KRAS mutations in CRC patients.
    Keywords:  Colorectal cancer; Haematological parameters; KRAS mutation; Serum tumour markers
    DOI:  https://doi.org/10.1186/s12885-020-07551-4
  10. J Cell Physiol. 2020 Nov 13.
      Morphine, a mu-opioid receptor (MOR) agonist, has been extensively used to treat advanced cancer pain. In particular, in patients with cancer metastasis, both morphine and anticancer drugs are given simultaneously. However, evidence showed that morphine might be a risk factor in promoting the tumor's malignant potential. In this study, we report that treatment with morphine could activate MOR and lead to the promotion of proliferation, migration, and invasion in HCT116 and DLD1 colorectal cancer (CRC) cells with time-concentration dependence. Moreover, morphine can also contribute to cetuximab's drug resistance, a targeted drug widely used to treat advanced CRC by inducing the activation of epidermal growth factor receptor (EGFR). The cell phenotype includes proliferation, migration, invasion, and drug resistance, which may be reversed by MOR knockdown or adding nalmefene, the MOR receptor antagonist. Receptor tyrosine kinase array analysis revealed that morphine selectively induced the transactivation of EGFR. EGFR transactivation resulted in the activation of ERK1/2 and AKT. In conclusion, morphine induces the transactivation of EGFR via MOR. It activates the downstream signal pathway AKT-MTOR and RAS-MAPK, increases proliferation, migration, and invasion, and promotes resistance to EGFR inhibitors in a CRC cell line. Furthermore, we verified that EGFR inhibition by cetuximab strongly reversed the protumoral effects of morphine in vitro and in vivo. Collectively, we provide evidence that morphine-EGFR signaling might be a promising therapeutic target for CRC patients, especially for cetuximab-resistant CRC patients.
    Keywords:  EGFR; cetuximab; colorectal cancer; morphine
    DOI:  https://doi.org/10.1002/jcp.30161
  11. Int J Biol Sci. 2020 ;16(16): 3100-3115
      Background: Metastasis is the most common cause of lethal outcome in various types of cancers. Although the cell proliferation related metabolism rewiring has been well characterized, less is known about the association of metabolic changes with tumor metastasis. Herein, we demonstrate that metastatic tumor obtained a mesenchymal phenotype, which is obtained by the loss of tumor suppressor NDRG2 triggered metabolic switch to glutamine metabolism. Methods: mRNA-seq and gene expression profile analysis were performed to define the differential gene expressions in primary MEC1 and metastatic MC3 cells and the downstream pathways of NDRG2. NDRG2 regulation of Fbw7-dependent c-Myc stability were determined by immunoprecipitation and protein half-life assay. Luciferase reporter and ChIP assays were used to determine the roles of Akt and c-Myc in mediating NDRG2-dependent regulation of ASCT2 in in both tumor and NDRG2-knockout MEF cells. Finally, the effect of the NDRG2/Akt/c-Myc/ASCT2 signaling on glutaminolysis and tumor metastasis were evaluated by functional experiments and clinical samples. Results: Based on the gene expression profile analysis, we identified metastatic tumor cells acquired the mesenchymal-like characteristics and displayed the increased dependency on glutamine utilization. Further, the gain of NDRG2 function blocked epithelial-mesenchymal transition (EMT) and glutaminolysis, potentially through suppression of glutamine transporter ASCT2 expression. The ASCT2 restoration reversed NDRG2 inhibitory effect on EMT program and tumor metastasis. Mechanistic study indicates that NDRG2 promoted Fbw7-dependent c-Myc degradation by inhibiting Akt activation, and subsequently decreased c-Myc-mediated ASCT2 transcription, in both tumor and NDRG2-knockout MEF cells. Supporting the biological significance, the reciprocal relationship between NDRG2 and ASCT2 were observed in multiple types of tumor tissues, and associated with tumor malignancy. Conclusions: NDRG2-dependent repression of ASCT2 presumably is the predominant route by which NDRG2 rewires glutaminolysis and blocks metastatic tumor survival. Targeting glutaminolytic pathway may provide a new strategy for the treatment of metastatic tumors.
    Keywords:  ASCT2; EMT; NDRG2; c-Myc; glutaminolysis; mucoepidermoid carcinoma
    DOI:  https://doi.org/10.7150/ijbs.48066
  12. Cancers (Basel). 2020 Nov 11. pii: E3326. [Epub ahead of print]12(11):
      RAS proteins (KRAS, NRAS and HRAS) are frequently activated in different cancer types (e.g., non-small cell lung cancer, colorectal cancer, melanoma and bladder cancer). For many years, their activities were considered redundant due to their high degree of sequence homology (80% identity) and their shared upstream and downstream protein partners. However, the high conservation of the Hyper-Variable-Region across mammalian species, the preferential activation of different RAS proteins in specific tumor types and the specific post-translational modifications and plasma membrane-localization of each paralog suggest they could ensure discrete functions. To gain insights into RAS proteins specificities, we explored their proximal protein-protein interaction landscapes using the proximity-dependent biotin identification technology (BioID) in Flp-In T-REx 293 cell lines stably transfected and inducibly expressing wild type KRAS4B, NRAS or HRAS. We identified more than 800 high-confidence proximal interactors, allowing us to propose an unprecedented comparative analysis of wild type RAS paralogs protein networks. These data bring novel information on poorly characterized RAS functions, e.g., its putative involvement in metabolic pathways, and on shared as well as paralog-specific protein networks that could partially explain the complexity of RAS functions. These networks of protein interactions open numerous avenues to better understand RAS paralogs biological activities.
    Keywords:  BioID; RAS paralogs; interactome; protein–protein interaction
    DOI:  https://doi.org/10.3390/cancers12113326
  13. Nat Rev Drug Discov. 2020 Nov 10.
      FOXO proteins are transcription factors that are involved in numerous physiological processes and in various pathological conditions, including cardiovascular disease, cancer, diabetes and chronic neurological diseases. For example, FOXO proteins are context-dependent tumour suppressors that are frequently inactivated in human cancers, and FOXO3 is the second most replicated gene associated with extreme human longevity. Therefore, pharmacological manipulation of FOXO proteins is a promising approach to developing therapeutics for cancer and for healthy ageing. In this Review, we overview the role of FOXO proteins in health and disease and discuss the pharmacological approaches to modulate FOXO function.
    DOI:  https://doi.org/10.1038/s41573-020-0088-2