bioRxiv. 2023 Dec 21. pii: 2023.12.20.572593. [Epub ahead of print]
Amino acid withdrawal suppresses mTORC1 signaling rapidly, which initiates macroautophagy (herein, autophagy). Prolonged amino acid deprivation, however, leads to partial reactivation of mTORC1 due to the liberation of free amino acids by autophagic proteolysis. We observed impaired reactivation of mTORC1 signaling and increased apoptotic cell death upon prolonged amino acid withdrawal in cells lacking the AMPKα1/α2 catalytic subunits. These findings align well with the role of AMPK in promoting cell survival during energetic stress but oppose the well-documented inhibitory action of AMPK toward mTORC1. AMPK-mediated reactivation of mTORC1 during prolonged amino acid deprivation could be explained, however, if AMPK were required for autophagy. Indeed, a prevailing view posits that activation of AMPK by glucose withdrawal promotes autophagy and mitophagy through multisite phosphorylation of ULK1. When we examined the role of AMPK in autophagy induced by amino acid deprivation, however, we found unexpectedly that autophagy remained unimpaired in cells lacking AMPK α1/α2, as monitored by several autophagic readouts in several cell lines. Moreover, the absence of AMPK increased ULK1 signaling, LC3b lipidation, and lysosomal acidity, and the phosphorylation of ULK1 S555 (an AMPK site proposed to induce autophagy) decreased upon amino acid withdrawal or pharmacological mTORC1 inhibition. In addition, activation of AMPK with compound 991, glucose deprivation, or AICAR blunted basal and amino acid withdrawal-induced autophagy. Together our results demonstrate that AMPK suppresses rather than promotes autophagy and supports mTORC1 signaling during prolonged amino acid deprivation, revealing unexpected roles for AMPK in control of these processes.