bims-pideca Biomed News
on Class IA PI3K signalling in development and cancer
Issue of 2023‒10‒15
sixteen papers selected by
Ralitsa Radostinova Madsen, MRC-PPU



  1. J Med Chem. 2023 Oct 11.
      Class II phosphoinositide-3-kinases (PI3Ks) play central roles in cell signaling, division, migration, and survival. Despite evidence that all PI3K class II isoforms serve unique cellular functions, the lack of isoform-selective inhibitors severely hampers the systematic investigation of their potential relevance as pharmacological targets. Here, we report the structural evaluation and molecular determinants for selective PI3K-C2α inhibition by a structure-activity relationship study based on a pteridinone scaffold, leading to the discovery of selective PI3K-C2α inhibitors called PITCOINs. Cocrystal structures and docking experiments supported the rationalization of the structural determinants essential for inhibitor activity and high selectivity. Profiling of PITCOINs in a panel of more than 118 diverse kinases showed no off-target kinase inhibition. Notably, by addressing a selectivity pocket, PITCOIN4 showed nanomolar inhibition of PI3K-C2α and >100-fold selectivity in a general kinase panel. Our study paves the way for the development of novel therapies for diseases related to PI3K-C2α function.
    DOI:  https://doi.org/10.1021/acs.jmedchem.3c01319
  2. Science. 2023 Oct 13. 382(6667): 223-230
      Neurons relay information via specialized presynaptic compartments for neurotransmission. Unlike conventional organelles, the specialized apparatus characterizing the neuronal presynapse must form de novo. How the components for presynaptic neurotransmission are transported and assembled is poorly understood. Our results show that the rare late endosomal signaling lipid phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] directs the axonal cotransport of synaptic vesicle and active zone proteins in precursor vesicles in human neurons. Precursor vesicles are distinct from conventional secretory organelles, endosomes, and degradative lysosomes and are transported by coincident detection of PI(3,5)P2 and active ARL8 via kinesin KIF1A to the presynaptic compartment. Our findings identify a crucial mechanism that mediates the delivery of synaptic vesicle and active zone proteins to developing synapses.
    DOI:  https://doi.org/10.1126/science.adg1075
  3. bioRxiv. 2023 Sep 28. pii: 2023.09.27.559766. [Epub ahead of print]
      1Over the last decade, advances in genome editing and pluripotent stem cell (PSC) culture have let researchers generate edited PSC lines to study a wide variety of biological questions. However, abnormalities in cell lines can arise during PSC culture or due to undesired editing outcomes. These can include aneuploidy, on-target and off-target editing errors, and microbial contamination. Any of these abnormalities can invalidate experiments, so detecting them is crucial. The ongoing decline of next-generation sequencing prices has made whole genome sequencing (WGS) an effective quality control option, since WGS can detect any abnormality involving changes to DNA sequences or presence of unwanted sequences. However, until now, this approach has suffered from a lack of easily usable data analysis software. Here, we present SeqVerify, a computational pipeline designed to take raw WGS data and a list of intended edits, and verify that the edits are present and that there are no abnormalities. We anticipate that SeqVerify will be a useful tool for researchers generating edited PSCs, and more broadly, for cell line quality control in general.
    DOI:  https://doi.org/10.1101/2023.09.27.559766
  4. iScience. 2023 Oct 20. 26(10): 107862
      Recent progress in protein engineering has established optogenetics as one of the leading external non-invasive stimulation strategies, with many optogenetic tools being designed for in vivo operation. Characterization and optimization of these tools require a high-throughput and versatile light delivery system targeting micro-titer culture volumes. Here, we present a universal light illumination platform - Diya, compatible with a wide range of cell culture plates and dishes. Diya hosts specially designed features ensuring active thermal management, homogeneous illumination, and minimal light bleedthrough. It offers light induction programming via a user-friendly custom-designed GUI. Through extensive characterization experiments with multiple optogenetic tools in diverse model organisms (bacteria, yeast, and human cell lines), we show that Diya maintains viable conditions for cell cultures undergoing light induction. Finally, we demonstrate an optogenetic strategy for in vivo biomolecular controller operation. With a custom-designed antithetic integral feedback circuit, we exhibit robust perfect adaptation and light-controlled set-point variation using Diya.
    Keywords:  Biodevices; Engineering; Synthetic biology; Systems biology
    DOI:  https://doi.org/10.1016/j.isci.2023.107862
  5. Cell Stem Cell. 2023 Oct 08. pii: S1934-5909(23)00329-6. [Epub ahead of print]
      Mutation accumulation in stem cells has been associated with cancer risk. However, the presence of numerous mutant clones in healthy tissues has raised the question of what limits cancer initiation. Here, we review recent developments in characterizing mutation accumulation in healthy tissues and compare mutation rates in stem cells during development and adult life with corresponding cancer risk. A certain level of mutagenesis within the stem cell pool might be beneficial to limit the size of malignant clones through competition. This knowledge impacts our understanding of carcinogenesis with potential consequences for the use of stem cells in regenerative medicine.
    Keywords:  carcinogenesis; clonal dynamics; somatic mutations; stem cell genomics
    DOI:  https://doi.org/10.1016/j.stem.2023.09.008
  6. Nat Genet. 2023 Oct 12.
      Joint analysis of single-cell genomics data from diseased tissues and a healthy reference can reveal altered cell states. We investigate whether integrated collections of data from healthy individuals (cell atlases) are suitable references for disease-state identification and whether matched control samples are needed to minimize false discoveries. We demonstrate that using a reference atlas for latent space learning followed by differential analysis against matched controls leads to improved identification of disease-associated cells, especially with multiple perturbed cell types. Additionally, when an atlas is available, reducing control sample numbers does not increase false discovery rates. Jointly analyzing data from a COVID-19 cohort and a blood cell atlas, we improve detection of infection-related cell states linked to distinct clinical severities. Similarly, we studied disease states in pulmonary fibrosis using a healthy lung atlas, characterizing two distinct aberrant basal states. Our analysis provides guidelines for designing disease cohort studies and optimizing cell atlas use.
    DOI:  https://doi.org/10.1038/s41588-023-01523-7
  7. EMBO Rep. 2023 Oct 11. e57228
      Mitochondrial diseases are a group of disorders defined by defects in oxidative phosphorylation caused by nuclear- or mitochondrial-encoded gene mutations. A main cellular phenotype of mitochondrial disease mutations is redox imbalances and inflammatory signaling underlying pathogenic signatures of these patients. One method to rescue this cell death vulnerability is the inhibition of mitochondrial translation using tetracyclines. However, the mechanisms whereby tetracyclines promote cell survival are unknown. Here, we show that tetracyclines inhibit the mitochondrial ribosome and promote survival through suppression of endoplasmic reticulum (ER) stress. Tetracyclines increase mitochondrial levels of the mitoribosome quality control factor MALSU1 (Mitochondrial Assembly of Ribosomal Large Subunit 1) and promote its recruitment to the mitoribosome large subunit, where MALSU1 is necessary for tetracycline-induced survival and suppression of ER stress. Glucose starvation induces ER stress to activate the unfolded protein response and IRE1α-mediated cell death that is inhibited by tetracyclines. These studies establish a new interorganelle communication whereby inhibition of the mitoribosome signals to the ER to promote survival, implicating basic mechanisms of cell survival and treatment of mitochondrial diseases.
    Keywords:  IRE1α; MALSU1; mitochondrial disease; mitoribosome; tetracyclines
    DOI:  https://doi.org/10.15252/embr.202357228
  8. J Clin Invest. 2023 Oct 12. pii: e173160. [Epub ahead of print]
      The metabolic syndrome, today affecting more than 20% of the US population, is a group of five conditions that often co-exist and that strongly predispose to cardiovascular disease. How these conditions are linked mechanistically remains unclear, especially two of these: obesity and elevated blood pressure. Here we show that high fat consumption in mice leads to the accumulation of lipid droplets in endothelial cells throughout the organism, and that lipid droplet accumulation in endothelium suppresses endothelial nitric oxide synthase (eNOS), reduces NO production, elevates blood pressure, and accelerates atherosclerosis. Mechanistically, the accumulation of lipid droplets destabilizes eNOS mRNA and activates an endothelial inflammatory signaling cascade that suppresses eNOS and NO production. Pharmacological prevention of lipid droplet formation reverses the suppression of NO production in cell culture and in vivo, and blunts blood pressure elevation in response to high fat diet. These results highlight lipid droplets as a critical and unappreciated component of endothelial cell biology, explain how lipids increase blood pressure acutely, and provide a mechanistic account for the epidemiological link between obesity and elevated blood pressure.
    Keywords:  Cardiology; Endothelial cells
    DOI:  https://doi.org/10.1172/JCI173160
  9. Stem Cell Reports. 2023 Sep 28. pii: S2213-6711(23)00368-5. [Epub ahead of print]
      A complete knockout of a single key pluripotency gene may drastically affect embryonic stem cell function and epigenetic reprogramming. In contrast, elimination of only one allele of a single pluripotency gene is mostly considered harmless to the cell. To understand whether complex haploinsufficiency exists in pluripotent cells, we simultaneously eliminated a single allele in different combinations of two pluripotency genes (i.e., Nanog+/-;Sall4+/-, Nanog+/-;Utf1+/-, Nanog+/-;Esrrb+/- and Sox2+/-;Sall4+/-). Although these double heterozygous mutant lines similarly contribute to chimeras, fibroblasts derived from these systems show a significant decrease in their ability to induce pluripotency. Tracing the stochastic expression of Sall4 and Nanog at early phases of reprogramming could not explain the seen delay or blockage. Further exploration identifies abnormal methylation around pluripotent and developmental genes in the double heterozygous mutant fibroblasts, which could be rescued by hypomethylating agent or high OSKM levels. This study emphasizes the importance of maintaining two intact alleles for pluripotency induction.
    Keywords:  haploinsufficiency; knockin/knockout targeting approach; methylation; nuclear transfer; pluripotent stem cells; reporter genes; reprogramming; stochastic expression; tracing system
    DOI:  https://doi.org/10.1016/j.stemcr.2023.09.009
  10. Anim Biotechnol. 2023 Oct 14. 1-11
      Methionine (Met) can promote milk fat synthesis in bovine mammary epithelial cells (BMECs), but the potential molecular mechanism is largely unknown. In this report, we aim to explore the role and molecular mechanism of AT-rich interaction domain 1A (ARID1A) in milk fat synthesis stimulated by Met. ARID1A knockdown and activation indicated that ARID1A negatively regulated the synthesis of triglycerides, cholesterol and free fatty acids and the formation of lipid droplets in BMECs. ARID1A also negatively regulated the phosphorylation of PI3K and AKT proteins, as well as the expression and maturation of SREBP1. Met stimulated the phosphorylation of PI3K and AKT proteins, as well as the expression and maturation of SREBP1, while ARID1A gene activation blocked the stimulatory effects of Met. We further found that ARID1A was located in the nucleus of BMECs, and Met reduced the nuclear localization and expression of ARID1A. ARID1A gene activation blocked the stimulation of PI3K and SREBP1 mRNA expression by Met. In summary, our data suggests that ARID1A negatively regulates milk fat synthesis stimulated by Met in BMECs through inhibiting the PI3K-SREBP1 signaling pathway, which may provide some new perspectives for improving milk fat synthesis.
    Keywords:  ARID1A; Met; SREBP1; bovine mammary epithelial cells; milk fat
    DOI:  https://doi.org/10.1080/10495398.2023.2265167
  11. Nat Commun. 2023 10 07. 14(1): 6271
      The insulin-related hormones regulate key life processes in Metazoa, from metabolism to growth, lifespan and aging, through an evolutionarily conserved insulin signalling axis (IIS). In humans the IIS axis is controlled by insulin, two insulin-like growth factors, two isoforms of the insulin receptor (hIR-A and -B), and its homologous IGF-1R. In Drosophila, this signalling engages seven insulin-like hormones (DILP1-7) and a single receptor (dmIR). This report describes the cryoEM structure of the dmIR ectodomain:DILP5 complex, revealing high structural homology between dmIR and hIR. The excess of DILP5 yields dmIR complex in an asymmetric 'T' conformation, similar to that observed in some complexes of human IRs. However, dmIR binds three DILP5 molecules in a distinct arrangement, showing also dmIR-specific features. This work adds structural support to evolutionary conservation of the IIS axis at the IR level, and also underpins a better understanding of an important model organism.
    DOI:  https://doi.org/10.1038/s41467-023-41862-x
  12. PLoS One. 2023 ;18(10): e0292554
      Numerous techniques have been employed to deconstruct the heterogeneity observed in normal and diseased cellular populations, including single cell RNA sequencing, in situ hybridization, and flow cytometry. While these approaches have revolutionized our understanding of heterogeneity, in isolation they cannot correlate phenotypic information within a physiologically relevant live-cell state with molecular profiles. This inability to integrate a live-cell phenotype-such as invasiveness, cell:cell interactions, and changes in spatial positioning-with multi-omic data creates a gap in understanding cellular heterogeneity. We sought to address this gap by employing lab technologies to design a detailed protocol, termed Spatiotemporal Genomic and Cellular Analysis (SaGA), for the precise imaging-based selection, isolation, and expansion of phenotypically distinct live cells. This protocol requires cells expressing a photoconvertible fluorescent protein and employs live cell confocal microscopy to photoconvert a user-defined single cell or set of cells displaying a phenotype of interest. The total population is then extracted from its microenvironment, and the optically highlighted cells are isolated using fluorescence activated cell sorting. SaGA-isolated cells can then be subjected to multi-omics analysis or cellular propagation for in vitro or in vivo studies. This protocol can be applied to a variety of conditions, creating protocol flexibility for user-specific research interests. The SaGA technique can be accomplished in one workday by non-specialists and results in a phenotypically defined cellular subpopulations for integration with multi-omics techniques. We envision this approach providing multi-dimensional datasets exploring the relationship between live cell phenotypes and multi-omic heterogeneity within normal and diseased cellular populations.
    DOI:  https://doi.org/10.1371/journal.pone.0292554
  13. Front Oncol. 2023 ;13 1278402
      Recently published work provide the first known evidence of a malignancy-associated regulatory mechanism, functionally connecting a phospho-regulated degron domain embedded in a receptor tyrosine kinase (RTK), with its ectopic expression in cancer, conditional to a specific autocrine growth factor signal. Mechanistically, the growth factor-triggered phosphorylation inhibits the degron domain present in the regulated RTK, blocking access to a specific degradation complex. This ultimately rescues the RTK from rapid ubiquitin-proteasome-system-mediated degradation and, most importantly, causes its cellular overexpression. This mechanism, which has been here assigned the new functional name "Over-Expression by Degradation Rescue" (OEDR), provides an additional layer and potentially preferential tool for the control of RTKs expression in cancer, in addition to other mechanisms acting at the transcriptional and messenger transcript stabilization levels. We propose this newly defined phosphorylation/ubiquitination switch-dependent signal to bear wider unexploited relevance in cell biology and human pathophysiology. The recently identified mechanism underlying an OEDR-regulated RTK is discussed herein in the context of physiological endocrine circuits and cancer.
    Keywords:  RTK; UPS; UbE3L; degron; gf; pDegron; paDegron; piDegron
    DOI:  https://doi.org/10.3389/fonc.2023.1278402
  14. J Cell Sci. 2023 Oct 10. pii: jcs.261300. [Epub ahead of print]
      Skeletal muscle insulin resistance, a major contributor to Type 2 Diabetes, is linked to the consumption of saturated fats. This insulin resistance arises from failure of insulin-induced translocation of glucose transporter type 4 (GLUT4) to the plasma membrane to facilitate glucose uptake into muscle. The mechanisms of defective GLUT4 translocation are poorly understood, limiting development of insulin-sensitizing therapies targeting muscle glucose uptake. While many studies identify early insulin signaling defects and suggest they are responsible for insulin resistance, their cause-effect has been debated. Here, we find that the saturated fat palmitate (PA) causes insulin resistance of GLUT4 translocation in skeletal muscle myoblasts and myotubes without impairing signaling to Akt or AS160. Instead, PA altered two basal-state events: a) the intracellular localization of GLUT4 and its sorting towards a perinuclear storage compartment, and b) actin filament stiffness that prevents Rac1-dependent actin remodeling. These defects were triggered by distinct mechanisms, respectively protein palmitoylation and endoplasmic reticulum (ER) stress. Our findings highlight that saturated fats elicit muscle cell-autonomous dysregulation of the basal-state machinery required for GLUT4 translocation that 'primes' cells for insulin resistance.
    Keywords:  Actin cytoskeleton; GLUT4; Insulin resistance; Palmitate
    DOI:  https://doi.org/10.1242/jcs.261300
  15. Nucleic Acids Res. 2023 Oct 12. pii: gkad824. [Epub ahead of print]
      Advancements in mass spectrometry (MS)-based proteomics have greatly facilitated the large-scale quantification of proteins and microproteins, thereby revealing altered signalling pathways across many different cancer types. However, specialized and comprehensive resources are lacking for cancer proteomics. Here, we describe CancerProteome (http://bio-bigdata.hrbmu.edu.cn/CancerProteome), which functionally deciphers and visualizes the proteome landscape in cancer. We manually curated and re-analyzed publicly available MS-based quantification and post-translational modification (PTM) proteomes, including 7406 samples from 21 different cancer types, and also examined protein abundances and PTM levels in 31 120 proteins and 4111 microproteins. Six major analytical modules were developed with a view to describe protein contributions to carcinogenesis using proteome analysis, including conventional analyses of quantitative and the PTM proteome, functional enrichment, protein-protein associations by integrating known interactions with co-expression signatures, drug sensitivity and clinical relevance analyses. Moreover, protein abundances, which correlated with corresponding transcript or PTM levels, were evaluated. CancerProteome is convenient as it allows users to access specific proteins/microproteins of interest using quick searches or query options to generate multiple visualization results. In summary, CancerProteome is an important resource, which functionally deciphers the cancer proteome landscape and provides a novel insight for the identification of tumor protein markers in cancer.
    DOI:  https://doi.org/10.1093/nar/gkad824
  16. Sci Adv. 2023 Oct 13. 9(41): eade3816
      Inherent or acquired resistance to sotorasib poses a substantialt challenge for NSCLC treatment. Here, we demonstrate that acquired resistance to sotorasib in isogenic cells correlated with increased expression of integrin β4 (ITGB4), a component of the focal adhesion complex. Silencing ITGB4 in tolerant cells improved sotorasib sensitivity, while overexpressing ITGB4 enhanced tolerance to sotorasib by supporting AKT-mTOR bypass signaling. Chronic treatment with sotorasib induced WNT expression and activated the WNT/β-catenin signaling pathway. Thus, silencing both ITGB4 and β-catenin significantly improved sotorasib sensitivity in tolerant, acquired, and inherently resistant cells. In addition, the proteasome inhibitor carfilzomib (CFZ) exhibited synergism with sotorasib by down-regulating ITGB4 and β-catenin expression. Furthermore, adagrasib phenocopies the combination effect of sotorasib and CFZ by suppressing KRAS activity and inhibiting cell cycle progression in inherently resistant cells. Overall, our findings unveil previously unrecognized nongenetic mechanisms underlying resistance to sotorasib and propose a promising treatment strategy to overcome resistance.
    DOI:  https://doi.org/10.1126/sciadv.ade3816