bims-pideca Biomed News
on Class IA PI3K signalling in development and cancer
Issue of 2023–10–01
twenty-one papers selected by
Ralitsa Radostinova Madsen, MRC-PPU



  1. J Virol. 2023 Sep 27. e0056323
      The phosphoinositide 3-kinase (PI3K)/AKT pathway plays crucial roles in cell viability and protein synthesis and is frequently co-opted by viruses to support their replication. Although many viruses maintain high levels of AKT activity during infection, other viruses, such as vesicular stomatitis virus and human cytomegalovirus (HCMV), cause AKT to accumulate in an inactive state. To efficiently replicate, HCMV requires FoxO transcription factors to localize to the infected cell nucleus (Zhang et al. mBio 2022), a process that is antagonized by AKT. Here, we investigated how HCMV inactivates AKT to achieve this. Results from subcellular fractionation and live-cell imaging studies indicated a defect in the recruitment of AKT to membranes upon serum stimulation of HCMV-infected cells. UV-inactivated virions failed to inactivate AKT, suggesting a requirement for de novo viral gene expression. Through additional studies, we identify that UL38 (pUL38), a viral activator of mTORC1, inactivates AKT by destabilizing insulin receptor substrate-1 (IRS1), a protein that recruits PI3K to growth factor receptors. Decreased electrophoretic mobility and diminished expression of IRS1 correlated with the accumulation of UL38 protein during infection. However, destabilization of IRS1 and loss of AKT activity did not occur in cells infected with an HCMV mutant disrupted for UL38 nor when mTORC1 was inhibited by rapamycin. Finally, ectopic expression of UL38 in uninfected cells sufficed to cause IRS1 degradation and AKT inactivation, and these effects were likewise reversed by rapamycin. Collectively, our results demonstrate that HCMV relies upon a cell-intrinsic negative feedback loop to render AKT inactive during productive infection. IMPORTANCE Human cytomegalovirus (HCMV) requires inactivation of AKT to efficiently replicate, yet how AKT is shut off during HCMV infection has remained unclear. We show that UL38, an HCMV protein that activates mTORC1, is necessary and sufficient to destabilize insulin receptor substrate 1 (IRS1), a model insulin receptor substrate (IRS) protein. Degradation of IRS proteins in settings of excessive mTORC1 activity is an important mechanism for insulin resistance. When IRS proteins are destabilized, PI3K cannot be recruited to growth factor receptor complexes, and hence, AKT membrane recruitment, a rate limiting step in its activation, fails to occur. Despite its penchant for remodeling host cell signaling pathways, our results reveal that HCMV relies upon a cell-intrinsic negative regulatory feedback loop to inactivate AKT. Given that pharmacological inhibition of PI3K/AKT potently induces HCMV reactivation from latency, our findings also imply that the expression of UL38 activity must be tightly regulated within latently infected cells to avoid spontaneous reactivation.
    Keywords:  AKT; IRS; PI3K; cell signaling; cytomegalovirus; herpesvirus; insulin; kinases; mTOR; mTORC1
    DOI:  https://doi.org/10.1128/jvi.00563-23
  2. J Biol Chem. 2023 Sep 21. pii: S0021-9258(23)02299-8. [Epub ahead of print] 105271
      The mammalian target of rapamycin (mTOR) is a serine-threonine kinase that acts as a central mediator of translation, and plays important roles in cell growth, synaptic plasticity, cancer, and a wide range of developmental disorders. The signaling cascade linking lipid kinases (PI3Ks), protein kinases (AKT) and translation initiation complexes (EIFs) to mTOR has been extensively modeled, but does not fully describe mTOR system behavior. Here, we use quantitative multiplex co-immunoprecipitation to monitor a protein interaction network (PIN) composed of 300+ binary interactions among mTOR-related proteins. Using a simple model system of serum-deprived or fresh-media-fed mouse 3T3 fibroblasts, we observed extensive PIN remodeling involving 27+ individual protein interactions after one hour, despite phosphorylation changes observed after only five minutes. Using small molecule inhibitors of PI3K, AKT, mTOR, MEK and ERK, we define subsets of the PIN, termed 'modules', that respond differently to each inhibitor. Using primary fibroblasts from individuals with overgrowth disorders caused by pathogenic PIK3CA or MTOR variants, we find that hyperactivation of mTOR pathway components is reflected in a hyperactive PIN. Our data define a "modular" organization of the mTOR PIN in which coordinated groups of interactions respond to activation or inhibition of distinct nodes, and demonstrate that kinase inhibitors affect the modular network architecture in a complex manner, inconsistent with simple linear models of signal transduction.
    Keywords:  Protein-protein interaction; mTOR; signal transduction
    DOI:  https://doi.org/10.1016/j.jbc.2023.105271
  3. Cell Syst. 2023 Sep 22. pii: S2405-4712(23)00244-2. [Epub ahead of print]
      Recent experimental developments in genome-wide RNA quantification hold considerable promise for systems biology. However, rigorously probing the biology of living cells requires a unified mathematical framework that accounts for single-molecule biological stochasticity in the context of technical variation associated with genomics assays. We review models for a variety of RNA transcription processes, as well as the encapsulation and library construction steps of microfluidics-based single-cell RNA sequencing, and present a framework to integrate these phenomena by the manipulation of generating functions. Finally, we use simulated scenarios and biological data to illustrate the implications and applications of the approach.
    Keywords:  Fokker-Planck equations; Markov chains; bioinformatics; chemical master equations; genomics; single-cell RNA sequencing; single-cell genomics; single-cell transcriptomics; stochastic differential equations; stochastic processes; transcriptomics
    DOI:  https://doi.org/10.1016/j.cels.2023.08.004
  4. Stroke. 2023 Sep 25.
       BACKGROUND: Cerebral cavernous malformations (CCMs) are vascular malformations that frequently cause stroke. CCMs arise due to loss of function in one of the genes that encode the CCM complex, a negative regulator of MEKK3-KLF2/4 signaling in vascular endothelial cells. Gain-of-function mutations in PIK3CA (encoding the enzymatic subunit of the PI3K (phosphoinositide 3-kinase) pathway associated with cell growth) synergize with CCM gene loss-of-function to generate rapidly growing lesions.
    METHODS: We recently developed a model of CCM formation that closely reproduces key events in human CCM formation through inducible CCM loss-of-function and PIK3CA gain-of-function in mature mice. In the present study, we use this model to test the ability of rapamycin, a clinically approved inhibitor of the PI3K effector mTORC1, to treat rapidly growing CCMs.
    RESULTS: We show that both intraperitoneal and oral administration of rapamycin arrests CCM growth, reduces perilesional iron deposition, and improves vascular perfusion within CCMs.
    CONCLUSIONS: Our findings further establish this adult CCM model as a valuable preclinical model and support clinical testing of rapamycin to treat rapidly growing human CCMs.
    Keywords:  humans; mice; mutation; perfusion; sirolimus; stroke
    DOI:  https://doi.org/10.1161/STROKEAHA.123.044108
  5. Sci Adv. 2023 Sep 29. 9(39): eadi1328
      EGFR-ERK signaling controls cell cycle progression during development, homeostasis, and disease. While EGF ligand and mechanical inputs can activate EGFR-ERK signaling, the molecules linking mechanical force to this axis have remained mysterious. We previously found that stretch promotes mitosis via the stretch-activated ion channel Piezo1 and ERK signaling. Here, we show that Piezo1 provides the missing link between mechanical signals and EGFR-ERK activation. While both EGF- and Piezo1-dependent activation trigger clathrin-mediated EGFR endocytosis and ERK activation, EGF relies on canonical tyrosine autophosphorylation, whereas Piezo1 involves Src-p38 kinase-dependent serine phosphorylation. In addition, unlike EGF, ex vivo lung slices treated with Piezo1 agonist promoted cell cycle re-entry via nuclear ERK, AP-1 (FOS and JUN), and YAP accumulation, typical of regenerative and malignant signaling. Our results suggest that mechanical activation via Piezo1, Src, and p38 may be more relevant to controlling repair, regeneration, and cancer growth than tyrosine kinase signaling via canonical EGF signaling, suggesting an alternative therapeutic approach.
    DOI:  https://doi.org/10.1126/sciadv.adi1328
  6. Cell Rep. 2023 Sep 22. pii: S2211-1247(23)01184-1. [Epub ahead of print]42(10): 113172
      Understanding the mechanisms underlying cancer gene expression is critical for precision oncology. Posttranscriptional regulation is a key determinant of protein abundance and cancer cell behavior. However, to what extent posttranscriptional regulatory mechanisms impact protein levels and cancer progression is an ongoing question. Here, we exploit cancer proteogenomics data to systematically compare mRNA-protein correlations across 14 different human cancer types. We identify two clusters of genes with particularly low mRNA-protein correlations across all cancer types, shed light on the role of posttranscriptional regulation of cancer driver genes and drug targets, and unveil a cohort of 55 mutations that alter systems-wide posttranscriptional regulation. Surprisingly, we find that decreased levels of posttranscriptional control in patients correlate with shorter overall survival across multiple cancer types, prompting further mechanistic studies into how posttranscriptional regulation affects patient outcomes. Our findings underscore the importance of a comprehensive understanding of the posttranscriptional regulatory landscape for predicting cancer progression.
    Keywords:  CP: Cancer; CP: Genomics; proteogenomics; translational regulation
    DOI:  https://doi.org/10.1016/j.celrep.2023.113172
  7. Nat Biotechnol. 2023 Sep 25.
      We present a combinatorial indexing method, PerturbSci-Kinetics, for capturing whole transcriptomes, nascent transcriptomes and single guide RNA (sgRNA) identities across hundreds of genetic perturbations at the single-cell level. Profiling a pooled CRISPR screen targeting various biological processes, we show the gene expression regulation during RNA synthesis, processing and degradation, miRNA biogenesis and mitochondrial mRNA processing, systematically decoding the genome-wide regulatory network that underlies RNA temporal dynamics at scale.
    DOI:  https://doi.org/10.1038/s41587-023-01948-9
  8. Nat Commun. 2023 Sep 28. 14(1): 6045
      Single-cell multi-omics data integration aims to reduce the omics difference while keeping the cell type difference. However, it is daunting to model and distinguish the two differences due to cell heterogeneity. Namely, even cells of the same omics and type would have various features, making the two differences less significant. In this work, we reveal that instead of being an interference, cell heterogeneity could be exploited to improve data integration. Specifically, we observe that the omics difference varies in cells, and cells with smaller omics differences are easier to be integrated. Hence, unlike most existing works that homogeneously treat and integrate all cells, we propose a multi-omics data integration method (dubbed scBridge) that integrates cells in a heterogeneous manner. In brief, scBridge iterates between i) identifying reliable scATAC-seq cells that have smaller omics differences, and ii) integrating reliable scATAC-seq cells with scRNA-seq data to narrow the omics gap, thus benefiting the integration for the rest cells. Extensive experiments on seven multi-omics datasets demonstrate the superiority of scBridge compared with six representative baselines.
    DOI:  https://doi.org/10.1038/s41467-023-41795-5
  9. Mol Cell. 2023 Sep 20. pii: S1097-2765(23)00695-0. [Epub ahead of print]
      Cyst(e)ine is a key precursor for the synthesis of glutathione (GSH), which protects cancer cells from oxidative stress. Cyst(e)ine is stored in lysosomes, but its role in redox regulation is unclear. Here, we show that breast cancer cells upregulate major facilitator superfamily domain containing 12 (MFSD12) to increase lysosomal cyst(e)ine storage, which is released by cystinosin (CTNS) to maintain GSH levels and buffer oxidative stress. We find that mTORC1 regulates MFSD12 by directly phosphorylating residue T254, while mTORC1 inhibition enhances lysosome acidification that activates CTNS. This switch modulates lysosomal cyst(e)ine levels in response to oxidative stress, fine-tuning redox homeostasis to enhance cell fitness. MFSD12-T254A mutant inhibits MFSD12 function and suppresses tumor progression. Moreover, MFSD12 overexpression correlates with poor neoadjuvant chemotherapy response and prognosis in breast cancer patients. Our findings reveal the critical role of lysosomal cyst(e)ine storage in adaptive redox homeostasis and suggest that MFSD12 is a potential therapeutic target.
    Keywords:  CTNS; GSH; MFSD12; breast cancer; chemotherapy; cyst(e)ine; lysosome; mTORC1; oxidative stress; redox homeostasis
    DOI:  https://doi.org/10.1016/j.molcel.2023.08.032
  10. Dis Model Mech. 2023 Sep 29. pii: dmm.050279. [Epub ahead of print]
      Organoids combined with genetic editing strategies, the potential to offer rapid and efficient investigation of gene function in many models of human disease. However, to date, the editing efficiency of organoids with the use of non-viral electroporation methods has been only up to 30%, with implications for the subsequent need for selection including turnaround time and exhaustion or adaptation of the organoid population. Here, we describe an efficient method of intestinal organoid editing using a Ribonucleoprotein CRISPR-based approach. Editing efficiencies of up to 98% in target genes were robustly achieved across different anatomical gut locations and developmental timepoints from multiple patient samples with no observed off-target editing. The method allowed us to study the effect of the loss of the tumour suppressor gene, PTEN, in normal human intestinal cells. Analysis of PTEN deficient organoids defined phenotypes that likely relate to its tumour suppressive function in vivo, such as a proliferative advantage and increased organoid budding. Transcriptional profiling revealed differential expression of genes in pathways commonly known to be associated with PTEN loss including mTORC1 activation.
    Keywords:  Genome editing; Organoids; PTEN
    DOI:  https://doi.org/10.1242/dmm.050279
  11. J Physiol. 2023 Oct;601(19): 4227-4241
      Cells execute specific responses to diverse environmental cues by encoding information in distinctly compartmentalized biochemical signalling reactions. Genetically encoded fluorescent biosensors enable the spatial and temporal monitoring of signalling events in live cells. Temporal and spatiotemporal computational models can be used to interpret biosensor experiments in complex biochemical networks and to explore hypotheses that are difficult to test experimentally. In this review, we first provide brief discussions of the experimental toolkit of fluorescent biosensors as well as computational basics with a focus on temporal and spatiotemporal deterministic models. We then describe how we used this combined approach to identify and investigate a protein kinase A (PKA) - cAMP - Ca2+ oscillatory circuit in MIN6 β cells, a mouse pancreatic β cell system. We describe the application of this combined approach to interrogate how this oscillatory circuit is differentially regulated in a nano-compartment formed at the plasma membrane by the scaffolding protein A kinase anchoring protein 79/150. We leveraged both temporal and spatiotemporal deterministic models to identify the key regulators of this oscillatory circuit, which we confirmed with further experiments. The powerful approach of combining live-cell biosensor imaging with quantitative modelling, as discussed here, should find widespread use in the investigation of spatiotemporal regulation of cell signalling.
    Keywords:  FRET biosensor imaging; cell signalling; computational modelling
    DOI:  https://doi.org/10.1113/JP282696
  12. Nature. 2023 Aug 16.
      
    Keywords:  Epigenetics; Stem cells
    DOI:  https://doi.org/10.1038/d41586-023-02381-3
  13. Nat Genet. 2023 Sep 25.
      The paradigm of cancer-targeted therapies has focused largely on inhibition of critical pathways in cancer. Conversely, conditional activation of signaling pathways as a new source of selective cancer vulnerabilities has not been deeply characterized. In this study, we sought to systematically identify context-specific gene-activation-induced lethalities in cancer. To this end, we developed a method for gain-of-function genetic perturbations simultaneously across ~500 barcoded cancer cell lines. Using this approach, we queried the pan-cancer vulnerability landscape upon activating ten key pathway nodes, revealing selective activation dependencies of MAPK and PI3K pathways associated with specific biomarkers. Notably, we discovered new pathway hyperactivation dependencies in subsets of APC-mutant colorectal cancers where further activation of the WNT pathway by APC knockdown or direct β-catenin overexpression led to robust antitumor effects in xenograft and patient-derived organoid models. Together, this study reveals a new class of conditional gene-activation dependencies in cancer.
    DOI:  https://doi.org/10.1038/s41588-023-01515-7
  14. Curr Biol. 2023 09 25. pii: S0960-9822(23)01067-9. [Epub ahead of print]33(18): R947-R950
      Regeneration requires the collective effort of multiple organ systems. A recent study of planarian whole-body regeneration finds that Erk kinase activity propagates rapidly across the entire animal through longitudinal muscle cells to coordinate animal-wide wound responses and that this signal propagation is required for regeneration.
    DOI:  https://doi.org/10.1016/j.cub.2023.08.024
  15. bioRxiv. 2023 Sep 13. pii: 2023.09.12.557440. [Epub ahead of print]
      Genome editing technologies that install diverse edits can widely enable genetic studies and new therapeutics. Here we develop click editing, a genome writing platform that couples the advantageous properties of DNA-dependent DNA polymerases with RNA-programmable nickases (e.g. CRISPR-Cas) to permit the installation of a range of edits including substitutions, insertions, and deletions. Click editors (CEs) leverage the "click"-like bioconjugation ability of HUH endonucleases (HUHes) with single stranded DNA substrates to covalently tether "click DNA" (clkDNA) templates encoding user-specifiable edits at targeted genomic loci. Through iterative optimization of the modular components of CEs (DNA polymerase and HUHe orthologs, architectural modifications, etc.) and their clkDNAs (template configurations, repair evading substitutions, etc.), we demonstrate the ability to install precise genome edits with minimal indels and no unwanted byproduct insertions. Since clkDNAs can be ordered as simple DNA oligonucleotides for cents per base, it is possible to screen many different clkDNA parameters rapidly and inexpensively to maximize edit efficiency. Together, click editing is a precise and highly versatile platform for modifying genomes with a simple workflow and broad utility across diverse biological applications.
    DOI:  https://doi.org/10.1101/2023.09.12.557440
  16. PLoS Biol. 2023 Sep 25. 21(9): e3002307
      To migrate efficiently, neutrophils must polarize their cytoskeletal regulators along a single axis of motion. This polarization process is thought to be mediated through local positive feedback that amplifies leading edge signals and global negative feedback that enables sites of positive feedback to compete for dominance. Though this two-component model efficiently establishes cell polarity, it has potential limitations, including a tendency to "lock" onto a particular direction, limiting the ability of cells to reorient. We use spatially defined optogenetic control of a leading edge organizer (PI3K) to probe how neutrophil-like HL-60 cells balance "decisiveness" needed to polarize in a single direction with the flexibility needed to respond to new cues. Underlying this balancing act is a local Rac inhibition process that destabilizes the leading edge to promote exploration. We show that this local inhibition enables cells to process input signal dynamics, linking front stability and orientation to local temporal increases in input signals.
    DOI:  https://doi.org/10.1371/journal.pbio.3002307
  17. bioRxiv. 2023 Sep 15. pii: 2023.09.14.543267. [Epub ahead of print]
      We describe a workflow for preprocessing a wide variety of single-cell genomics data types. The approach is based on parsing of machine-readable seqspec assay specifications to customize inputs for kb-python , which uses kallisto and bustools to catalog reads, error correct barcodes, and count reads. The universal preprocessing method is implemented in the Python package cellatlas that is available for download at: https://github.com/cellatlas/cellatlas/ .
    DOI:  https://doi.org/10.1101/2023.09.14.543267
  18. bioRxiv. 2023 Sep 16. pii: 2023.09.14.557437. [Epub ahead of print]
      For eukaryotic cells to heal wounds, respond to immune signals, or metastasize, they must migrate, often by adhering to extracellular matrix. Cells may also secrete matrix factors, leaving behind a footprint that influences their crawling. Recent experiments showed that epithelial cells on micropatterned adhesive stripes move persistently in regions they have previously crawled over, where footprints have been formed, but barely advance into unexplored regions, creating an oscillatory migration of increasing amplitude. Here, we explore through mathematical modeling how footprint secretion and cell responses to footprint combine to allow cells to develop oscillation and other complex migratory motions. We simulate cell crawling with a phase field model coupled to a biochemical model of cell polarity, assuming local contact with the secreted footprint activates Rac1, a polarity protein at the front of the cell. Depending on the footprint secretion rate and the response to the footprint, cells on micropatterned lines can display a variety of types of motility, including confined, oscillatory, and persistent motion. On 2D substrates, we predict a transition between cells undergoing circular motion and cells developing a more exploratory phenotype. Our model shows how minor changes in a cell's interaction with its footprint can completely alter exploration, allowing cells to tightly regulate their motion, as well as leading to a wide spectrum of behaviors when secretion or sensing is variable from cell to cell. Consistent with our computational predictions, we find in earlier experimental data evidence of cells undergoing both circular and exploratory motion. Our work proposes a new paradigm for how cells regulate their own motility.
    DOI:  https://doi.org/10.1101/2023.09.14.557437
  19. Mol Syst Biol. 2023 Sep 26. e11657
      CRISPR-Cas9 screens facilitate the discovery of gene functional relationships and phenotype-specific dependencies. The Cancer Dependency Map (DepMap) is the largest compendium of whole-genome CRISPR screens aimed at identifying cancer-specific genetic dependencies across human cell lines. A mitochondria-associated bias has been previously reported to mask signals for genes involved in other functions, and thus, methods for normalizing this dominant signal to improve co-essentiality networks are of interest. In this study, we explore three unsupervised dimensionality reduction methods-autoencoders, robust, and classical principal component analyses (PCA)-for normalizing the DepMap to improve functional networks extracted from these data. We propose a novel "onion" normalization technique to combine several normalized data layers into a single network. Benchmarking analyses reveal that robust PCA combined with onion normalization outperforms existing methods for normalizing the DepMap. Our work demonstrates the value of removing low-dimensional signals from the DepMap before constructing functional gene networks and provides generalizable dimensionality reduction-based normalization tools.
    Keywords:  auto-encoder; gene co-essentiality network; normalization; robust principal component analysis; unsupervised dimensionality reduction
    DOI:  https://doi.org/10.15252/msb.202311657
  20. bioRxiv. 2023 Sep 24. pii: 2023.09.17.557982. [Epub ahead of print]
      Cells are fundamental units of life. Recent technical advances have revolutionized our ability to quantify the state and identity of individual cells, and intercellular regulatory programs. However, these static measurements alone are limited in their ability to predict the complex collective behaviors that emerge from populations of many interacting cells over time. Mathematical models have a proven record of successfully predicting the behaviors of dynamic biological systems, e.g., therapeutic responses in cancer. Simulations from these models enable in silico visualization, examination, and refinement of biological models and can be used to generate new hypotheses about cells and their collective behavior. Agent-based modeling is particularly well-suited to studying communities of interacting cells, as it is intuitive to map a single cell to a single agent. Thus, we have developed a conceptual framing (with a reference implementation in the widely-used PhysiCell agent-based modeling framework) that can be initialized directly from single cell and spatial transcriptomic data, and that can be easily populated with interactive rules. Because the expert mathematical and computational knowledge required to build agent-based models has limited their widespread adoption in the biomedical research community, we engineered this framework to specify complex cellular responses to signals (or stimuli) using a single line of human readable text. This plain language text encodes cellular phenotypes and regulatory mechanisms from high throughput data and published literature, using a novel concept of hypothesis grammar. We motivate and fully describe this grammar and its philosophy, and then present a series of five example reference models of tumor growth and response to immunotherapy. Biologically, these examples demonstrate how mathematical models can predict from single cell and spatial transcriptomic data the cellular phenotypes responsible for tumor cell invasion and the simulation of immunotherapy treatment to overcome tumor cell growth. Computationally, these examples are designed to demonstrate how this conceptual framing and software implementation empower interdisciplinary teams to build an agent-based model of their experimental system, levering prior biological knowledge alone or in combination with information from spatial multi-omics technologies. Altogether, this approach provides an interface to bridge biological, clinical, and systems biology researchers for mathematical modeling of biological systems at scale, allowing the community to extrapolate from single-cell characterization to emergent multicellular behavior.
    DOI:  https://doi.org/10.1101/2023.09.17.557982