bims-pideca Biomed News
on Class IA PI3K signalling in development and cancer
Issue of 2023–09–17
33 papers selected by
Ralitsa Radostinova Madsen, MRC-PPU



  1. Elife. 2023 Sep 12. pii: e74903. [Epub ahead of print]12
      mTORC1 senses nutrients and growth factors and phosphorylates downstream targets, including the transcription factor TFEB, to coordinate metabolic supply and demand. These functions position mTORC1 as a central controller of cellular homeostasis, but the behavior of this system in individual cells has not been well characterized. Here, we provide measurements necessary to refine quantitative models for mTORC1 as a metabolic controller. We developed a series of fluorescent protein-TFEB fusions and a multiplexed immunofluorescence approach to investigate how combinations of stimuli jointly regulate mTORC1 signaling at the single-cell level. Live imaging of individual MCF10A cells confirmed that mTORC1-TFEB signaling responds continuously to individual, sequential, or simultaneous treatment with amino acids and the growth factor insulin. Under physiologically relevant concentrations of amino acids, we observe correlated fluctuations in TFEB, AMPK, and AKT signaling that indicate continuous activity adjustments to nutrient availability. Using partial least squares regression modeling, we show that these continuous gradations are connected to protein synthesis rate via a distributed network of mTORC1 effectors, providing quantitative support for the qualitative model of mTORC1 as a homeostatic controller and clarifying its functional behavior within individual cells.
    Keywords:  cell biology; computational biology; human; systems biology
    DOI:  https://doi.org/10.7554/eLife.74903
  2. Dev Cell. 2023 Sep 09. pii: S1534-5807(23)00436-7. [Epub ahead of print]
      Extracellular signal-regulated kinase (Erk) signaling dynamics elicit distinct cellular responses in a variety of contexts. The early zebrafish embryo is an ideal model to explore the role of Erk signaling dynamics in vivo, as a gradient of activated diphosphorylated Erk (P-Erk) is induced by fibroblast growth factor (Fgf) signaling at the blastula margin. Here, we describe an improved Erk-specific biosensor, which we term modified Erk kinase translocation reporter (modErk-KTR). We demonstrate the utility of this biosensor in vitro and in developing zebrafish and Drosophila embryos. Moreover, we show that Fgf/Erk signaling is dynamic and coupled to tissue growth during both early zebrafish and Drosophila development. Erk activity is rapidly extinguished just prior to mitosis, which we refer to as mitotic erasure, inducing periods of inactivity, thus providing a source of heterogeneity in an asynchronously dividing tissue. Our modified reporter and transgenic lines represent an important resource for interrogating the role of Erk signaling dynamics in vivo.
    Keywords:  Drosophila; Erk; Fgf signaling; kinase translocation reporter; mitosis; zebrafish
    DOI:  https://doi.org/10.1016/j.devcel.2023.08.021
  3. Cell Chem Biol. 2023 Aug 31. pii: S2451-9456(23)00279-9. [Epub ahead of print]
      A challenge for screening new anticancer drugs is that efficacy in cell culture models is not always predictive of efficacy in patients. One limitation of standard cell culture is a reliance on non-physiological nutrient levels, which can influence cell metabolism and drug sensitivity. A general assessment of how physiological nutrients affect cancer cell response to small molecule therapies is lacking. To address this, we developed a serum-derived culture medium that supports the proliferation of diverse cancer cell lines and is amenable to high-throughput screening. We screened several small molecule libraries and found that compounds targeting metabolic enzymes were differentially effective in standard compared to serum-derived medium. We exploited the differences in nutrient levels between each medium to understand why medium conditions affected the response of cells to some compounds, illustrating how this approach can be used to screen potential therapeutics and understand how their efficacy is modified by available nutrients.
    Keywords:  Cancer cell metabolism; Culture media; Drug sensitivity; High-throughput screening; Nutrient environment; Phenotypic drug screening; Physiologic media
    DOI:  https://doi.org/10.1016/j.chembiol.2023.08.007
  4. Nat Biotechnol. 2023 Sep 14.
      Reverse transcriptases, used in prime editing systems, exhibit lower fidelity, processivity and dNTP affinity than many DNA-dependent DNA polymerases. We report that a DNA-dependent DNA polymerase (phi29), untethered from Cas9, enables editing from a synthetic, end-stabilized DNA-containing template at up to 60% efficiency in human cells. Compared to prime editing, DNA polymerase editing avoids autoinhibitory intramolecular base pairing of the template, facilitates template synthesis and supports larger insertions (>100 nucleotides).
    DOI:  https://doi.org/10.1038/s41587-023-01947-w
  5. J Exp Med. 2023 Nov 06. pii: e20230926. [Epub ahead of print]220(11):
      Hemifacial myohyperplasia (HFMH) is a rare cause of facial asymmetry exclusively involving facial muscles. The underlying cause and the mechanism of disease progression are unknown. Here, we identified a somatic gain-of-function mutation of PIK3CA in five pediatric patients with HFMH. To understand the physiopathology of muscle hypertrophy in this context, we created a mouse model carrying specifically a PIK3CA mutation in skeletal muscles. PIK3CA gain-of-function mutation led to striated muscle cell hypertrophy, mitochondria dysfunction, and hypoglycemia with low circulating insulin levels. Alpelisib treatment, an approved PIK3CA inhibitor, was able to prevent and reduce muscle hypertrophy in the mouse model with correction of endocrine anomalies. Based on these findings, we treated the five HFMH patients. All patients demonstrated clinical, esthetical, and radiological improvement with proof of target engagement. In conclusion, we show that HFMH is due to somatic alteration of PIK3CA and is accessible to pharmacological intervention.
    DOI:  https://doi.org/10.1084/jem.20230926
  6. Nat Methods. 2023 Sep 14.
      Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However, for scientists wishing to publish obtained images and image-analysis results, there are currently no unified guidelines for best practices. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here, we present community-developed checklists for preparing light microscopy images and describing image analyses for publications. These checklists offer authors, readers and publishers key recommendations for image formatting and annotation, color selection, data availability and reporting image-analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby to heighten the quality and explanatory power of microscopy data.
    DOI:  https://doi.org/10.1038/s41592-023-01987-9
  7. Sci Adv. 2023 Sep 15. 9(37): eadd9084
      The mechanistic target of rapamycin complex 1 (mTORC1) is part of the amino acid sensing machinery that becomes activated on the endolysosomal surface in response to nutrient cues. Branched actin generated by WASH and Arp2/3 complexes defines endolysosomal microdomains. Here, we find mTORC1 components in close proximity to endolysosomal actin microdomains. We investigated for interactors of the mTORC1 lysosomal tether, RAGC, by proteomics and identified multiple actin filament capping proteins and their modulators. Perturbation of RAGC function affected the size of endolysosomal actin, consistent with a regulation of actin filament capping by RAGC. Reciprocally, the pharmacological inhibition of actin polymerization or alteration of endolysosomal actin obtained upon silencing of WASH or Arp2/3 complexes impaired mTORC1 activity. Mechanistically, we show that actin is required for proper association of RAGC and mTOR with endolysosomes. This study reveals an unprecedented interplay between actin and mTORC1 signaling on the endolysosomal system.
    DOI:  https://doi.org/10.1126/sciadv.add9084
  8. Med Oncol. 2023 Sep 15. 40(10): 299
      Anaplastic thyroid cancer (ATC) is a rare and aggressive disease with 90% of patients succumbing to this disease 1 year after diagnosis. The approval of the combination therapy of a BRAF inhibitor dabrafenib with the MEK1/2 inhibitor trametinib has improved the overall survival of ATC patients. However, resistance to therapy remains a major problem. We have previously demonstrated combined inhibition of Src with dasatinib and MEK1/2 with trametinib synergistically inhibits growth and induces apoptosis in BRAF- and RAS-mutant thyroid cancer cells, however PIK3CA-mutant cells exhibit a mixed response. Herein, we determined that AKT is not a major mediator of sensitivity and instead PIK3CA-mutants that are resistant to combined dasatinib and trametinib have sustained activation of PDK1 signaling. Furthermore, combined inhibition of PDK1 and MEK1/2 was sufficient to reduce cell viability. These data indicate PDK1 inhibition is a therapeutic option for PIK3CA mutations that do not respond to combined Src and MEK1/2 inhibition.
    Keywords:  Dasatinib; MAPK; PI3K; Src; Thyroid cancer; Trametinib
    DOI:  https://doi.org/10.1007/s12032-023-02118-2
  9. J Biol Chem. 2023 Sep 08. pii: S0021-9258(23)02262-7. [Epub ahead of print] 105234
      The Extracellular signal Regulated Kinase (ERK) controls multiple critical processes in the cell and is deregulated by mutations in human cancers, congenital abnormalities, immune diseases, and neurodevelopmental syndromes. Catalytic activity of ERK requires dual phosphorylation by an upstream kinase, in a mechanism that can be described by two sequential Michaelis-Menten (MM) steps. The estimation of individual reaction rate constants from kinetic data in the full mechanism has proved challenging. Here, we present an analytically tractable approach to parameter estimation that is based on the phase plane representation of ERK activation and yields two combinations of six reaction rate constants in the detailed mechanism. These combinations correspond to the ratio of the specificities of two consecutive phosphorylations and the probability that monophosphorylated substrate does not dissociate from the enzyme before the second phosphorylation. The presented approach offers a language for comparing the effects of mutations that disrupt ERK activation and function in vivo. As an illustration, we use the phase plane representation to analyze dual phosphorylation under heterozygous conditions, when two enzyme variants compete for the same substrate.
    DOI:  https://doi.org/10.1016/j.jbc.2023.105234
  10. Nat Commun. 2023 Sep 13. 14(1): 5665
      Triple-negative breast cancer (TNBC) patients have a poor prognosis and few treatment options. Mouse models of TNBC are important for development of new therapies, however, few mouse models represent the complexity of TNBC. Here, we develop a female TNBC murine model by mimicking two common TNBC mutations with high co-occurrence: amplification of the oncogene MYC and deletion of the tumor suppressor PTEN. This Myc;Ptenfl model develops heterogeneous triple-negative mammary tumors that display histological and molecular features commonly found in human TNBC. Our research involves deep molecular and spatial analyses on Myc;Ptenfl tumors including bulk and single-cell RNA-sequencing, and multiplex tissue-imaging. Through comparison with human TNBC, we demonstrate that this genetic mouse model develops mammary tumors with differential survival and therapeutic responses that closely resemble the inter- and intra-tumoral and microenvironmental heterogeneity of human TNBC, providing a pre-clinical tool for assessing the spectrum of patient TNBC biology and drug response.
    DOI:  https://doi.org/10.1038/s41467-023-40841-6
  11. Sci Adv. 2023 Sep 15. 9(37): eadi1057
      Insulin is a hormone responsible for maintaining normal glucose levels by activating insulin receptor (IR) and is the primary treatment for diabetes. However, insulin is prone to unfolding and forming cross-β fibers. Fibrillation complicates insulin storage and therapeutic application. Molecular details of insulin fibrillation remain unclear, hindering efforts to prevent fibrillation process. Here, we characterized insulin fibrils using cryo-electron microscopy (cryo-EM), showing multiple forms that contain one or more of the protofilaments containing both the A and B chains of insulin linked by disulfide bonds. We solved the cryo-EM structure of one of the fibril forms composed of two protofilaments at 3.2-Å resolution, which reveals both the β sheet conformation of the protofilament and the packing interaction between them that underlie the fibrillation. On the basis of this structure, we designed several insulin mutants that display reduced fibrillation while maintaining native IR signaling activity. These designed insulin analogs may be developed into more effective therapeutics for type 1 diabetes.
    DOI:  https://doi.org/10.1126/sciadv.adi1057
  12. Diabetes. 2023 Sep 12. pii: db230035. [Epub ahead of print]
      The ability of metabolically active tissues to increase glucose uptake in response to insulin is critical to whole-body glucose homeostasis. This report describes the Dual Tracer Test, a robust method involving sequential retro-orbital injection of 14C-2-deoxyglucose (14C-2DG) alone, followed 40 min later by injection of 3H-2DG with a maximal dose of insulin to quantify both basal and insulin-stimulated 2DG uptake in the same mouse. The collection of both basal and insulin-stimulated measures from a single animal is imperative for generating high-quality data since differences in insulin action may be misinterpreted mechanistically if basal glucose uptake is not accounted for. The approach was validated in a classic diet-induced model of insulin resistance and a novel transgenic mouse with reduced GLUT4 expression that, despite ubiquitous peripheral insulin resistance, did not exhibit fasting hyperinsulinemia. This suggests that reduced insulin-stimulated glucose disposal is not a primary contributor to chronic hyperinsulinemia. The Dual Tracer Test offers a technically simple assay that enables the study of insulin action in many tissues simultaneously. By administering two tracers and accounting for both basal and insulin-stimulated glucose transport, this assay halves the required sample size for studies in inbred mice and demonstrates increased statistical power to detect insulin resistance, relative to other established approaches using a single tracer. The Dual Tracer Test is a valuable addition to the metabolic phenotyping toolbox.
    DOI:  https://doi.org/10.2337/db23-0035
  13. Am J Med Genet A. 2023 Sep 13.
      Turner syndrome (45,X) is caused by a complete or partial absence of a single X chromosome. Vascular malformations occur due to abnormal development of blood and/or lymphatic vessels. They arise from either somatic or germline pathogenic variants in the genes regulating growth and apoptosis of vascular channels. Aortic abnormalities are a common, known vascular anomaly of Turner syndrome. However, previous studies have described other vascular malformations as a rare feature of Turner syndrome and suggested that vascular abnormalities in individuals with Turner syndrome may be more generalized. In this study, we describe two individuals with co-occurrence of Turner syndrome and vascular malformations with a lymphatic component. In these individuals, genetic testing of the lesional tissue revealed a somatic pathogenic variant in PIK3CA-a known and common cause of lymphatic malformations. Based on this finding, we conclude that the vascular malformations presented here and likely those previously in the literature are not a rare part of the clinical spectrum of Turner syndrome, but rather a separate clinical entity that may or may not co-occur in individuals with Turner syndrome.
    Keywords:  PIK3CA-related vascular malformation; Turner syndrome; lymphatic malformation; mosaicism; theragnostics; vascular malformation
    DOI:  https://doi.org/10.1002/ajmg.a.63385
  14. Stem Cell Reports. 2023 Sep 12. pii: S2213-6711(23)00302-8. [Epub ahead of print]18(9): 1744-1752
      The laboratory culture of human stem cells seeks to capture a cellular state as an in vitro surrogate of a biological system. For the results and outputs from this research to be accurate, meaningful, and durable, standards that ensure reproducibility and reliability of the data should be applied. Although such standards have been previously proposed for repositories and distribution centers, no widely accepted best practices exist for laboratory research with human pluripotent and tissue stem cells. To fill that void, the International Society for Stem Cell Research has developed a set of recommendations, including reporting criteria, for scientists in basic research laboratories. These criteria are designed to be technically and financially feasible and, when implemented, enhance the reproducibility and rigor of stem cell research.
    Keywords:  hESCS; hIPSCs; human; model systems; organoids; tissue stem cells
    DOI:  https://doi.org/10.1016/j.stemcr.2023.08.003
  15. Nature. 2023 Sep;621(7978): 373-380
      The development of the human brain involves unique processes (not observed in many other species) that can contribute to neurodevelopmental disorders1-4. Cerebral organoids enable the study of neurodevelopmental disorders in a human context. We have developed the CRISPR-human organoids-single-cell RNA sequencing (CHOOSE) system, which uses verified pairs of guide RNAs, inducible CRISPR-Cas9-based genetic disruption and single-cell transcriptomics for pooled loss-of-function screening in mosaic organoids. Here we show that perturbation of 36 high-risk autism spectrum disorder genes related to transcriptional regulation uncovers their effects on cell fate determination. We find that dorsal intermediate progenitors, ventral progenitors and upper-layer excitatory neurons are among the most vulnerable cell types. We construct a developmental gene regulatory network of cerebral organoids from single-cell transcriptomes and chromatin modalities and identify autism spectrum disorder-associated and perturbation-enriched regulatory modules. Perturbing members of the BRG1/BRM-associated factor (BAF) chromatin remodelling complex leads to enrichment of ventral telencephalon progenitors. Specifically, mutating the BAF subunit ARID1B affects the fate transition of progenitors to oligodendrocyte and interneuron precursor cells, a phenotype that we confirmed in patient-specific induced pluripotent stem cell-derived organoids. Our study paves the way for high-throughput phenotypic characterization of disease susceptibility genes in organoid models with cell state, molecular pathway and gene regulatory network readouts.
    DOI:  https://doi.org/10.1038/s41586-023-06473-y
  16. Mol Biol Cell. 2023 Sep 13. mbcE23030078
      Adipocyte dysfunction is a crucial driver of insulin resistance and type 2 diabetes. We identified EH domain-containing protein 2 (EHD2) as one of the most highly upregulated genes at the early stage of adipose tissue expansion. EHD2 is a dynamin-related ATPase influencing several cellular processes, including membrane recycling, caveolae dynamics and lipid metabolism. Here, we investigated the role of EHD2 in adipocyte insulin signalling and glucose transport. Using C57BL6/N EHD2 knockout mice under short-term high-fat diet conditions and 3T3-L1 adipocytes we demonstrate that EHD2 deficiency is associated with deterioration of insulin signal transduction and impaired insulin-stimulated GLUT4 translocation. Furthermore, we show that lack of EHD2 is linked with altered plasma membrane lipid and protein composition, reduced insulin receptor expression, and diminished insulin-dependent SNARE protein complex formation. In conclusion, these data highlight the importance of EHD2 for the integrity of the plasma membrane milieu, insulin receptor stability, and downstream insulin receptor signalling events, involved in glucose uptake and ultimately underscore its role in insulin resistance and obesity.
    DOI:  https://doi.org/10.1091/mbc.E23-03-0078
  17. Stem Cell Reports. 2023 Sep 12. pii: S2213-6711(23)00309-0. [Epub ahead of print]18(9): 1898-1898.e1
    ISSCR Task Force for Basic Research Standards. Electronic address: tludwig@wicell.org
      This checklist is intended to help scientists, reviewers, and editors prepare and assess manuscripts for inclusion of critical details relevant to work with pluripotent stem cells (PSCs) and tissue stem cells (TSCs) with the goal of increasing the rigor and reproducibility of research through reporting. It is essential that any published paper includes detailed information on the following parameters to increase the transparency of the experimental details and ensure that the published results are reproducible. For additional details on the recommendations, please see the specific sections of the ISSCR's Standards for Human Stem Cell Use in Research referenced in the checklist (https://www.isscr.org/standards-document). All sections apply to PSCs and TSCs unless otherwise noted. To view this SnapShot, open or download the PDF.
    DOI:  https://doi.org/10.1016/j.stemcr.2023.08.010
  18. Breast Cancer Res Treat. 2023 Sep 13.
       PURPOSE: Phosphoinositide 3-kinase (PI3K) inhibition is used for the treatment of certain cancers, but can cause profound hyperglycemia and insulin resistance, for which sodium-glucose cotransporter-2 (SGLT2) inhibitors have been proposed as a preferred therapy. The objective of this research is to assess the effectiveness and safety of SGLT2 inhibitors for hyperglycemia in PI3K inhibition.
    METHODS: We conducted a single-center retrospective review of adults initiating the PI3K inhibitor alpelisib. Exposure to different antidiabetic drugs and adverse events including diabetic ketoacidosis (DKA) were assessed through chart review. Plasma and point-of-care blood glucoses were extracted from the electronic medical record. Change in serum glucose and the rate of DKA on SGLT2 inhibitor versus other antidiabetic drugs were examined as co-primary outcomes.
    RESULTS: We identified 103 patients meeting eligibility criteria with median follow-up of 92 days after starting alpelisib. When SGLT2 inhibitors were used to treat hyperglycemia, they were associated with a decrease in mean random glucose by -46 mg/dL (95% CI - 77 to - 15) in adjusted linear modeling. Five cases of DKA were identified, two occurring in patients on alpelisib plus SGLT2 inhibitor. Estimated incidence of DKA was: alpelisib plus SGLT2 inhibitor, 48 DKA cases per 100 patient-years (95% CI 6, 171); alpelisib with non-SGLT2 inhibitor antidiabetic drugs, 15 (95% CI 2, 53); alpelisib only, 4 (95% CI 0.1, 22).
    CONCLUSIONS: SGLT2 inhibitors are effective treatments for hyperglycemia in the setting of PI3K inhibition.
    Keywords:  Adverse effects; Alpelisib; Hyperglycemia; Metastatic breast cancer; PIK3CA
    DOI:  https://doi.org/10.1007/s10549-023-07110-y
  19. bioRxiv. 2023 Aug 29. pii: 2023.08.29.555397. [Epub ahead of print]
      Single cell proteomics (SCP) requires the analysis of dozens to thousands of single human cells to draw biological conclusions. However, assessing of the abundance of single proteins in output data presents a considerable challenge, and no simple universal solutions currently exist. To address this, we developed SCP Viz, a statistical package with a graphical user interface that can handle small and large scale SCP output from any instrument or data processing software. In this software, the abundance of individual proteins can be plotted in a variety of ways, using either unadjusted or normalized outputs. These outputs can also be transformed or imputed within the software. SCP Viz offers a variety of plotting options which can help identify significantly altered proteins between groups, both before and after quantitative transformations. Upon the discovery of subpopulations of single cells, users can easily regroup the cells of interest using straightforward text-based filters. When used in this way, SCP Viz allows users to visualize proteomic heterogeneity at the level of individual proteins, cells, or identified subcellular populations. SCP Viz is compatible with output files from MaxQuant, FragPipe, SpectroNaut, and Proteome Discoverer, and should work equally well with other formats. SCP Viz is publicly available at https://github.com/orsburn/SCPViz . For demonstrations, users can download our test data from GitHub and use an online version that accepts user input for analysis at https://orsburnlab.shinyapps.io/SCPViz/ .
    Abstract graphic:
    DOI:  https://doi.org/10.1101/2023.08.29.555397
  20. Nature. 2023 Sep 13.
      
    Keywords:  Cancer; Medical research; Stem cells
    DOI:  https://doi.org/10.1038/d41586-023-02851-8
  21. Am J Pathol. 2023 Sep 07. pii: S0002-9440(23)00317-6. [Epub ahead of print]
      We have previously shown that five growth factors (Factors) [i.e. insulin, fibroblast growth factor-2 (FGF-2), stem cell factor (SCF), interleukin-3 (IL-3), and stromal-derived factor-1 alpha (SDF-1α)] in combination are necessary for human ECs to undergo tube morphogenesis, a process requiring both lumen formation and sprouting behavior. Here, we investigate why they are required by subdividing the Factors into 4 separate groups: Insulin only, Insulin + FGF-2, no FGF-2 (all Factors but without FGF-2), and all Factors. We demonstrate that the Insulin only condition fails to support EC morphogenesis or survival, the Insulin + FGF-2 condition supports primarily EC lumen formation, and the no FGF-2 condition supports EC sprouting behavior. By comparison, the all Factors condition more strongly stimulates both EC lumen formation and sprouting behavior and signaling analysis revealed prolonged stimulation of multiple pro-morphogenic signals coupled with inhibition of pro-regressive signals. Pharmacological inhibition of Jak kinases more selectively blocks EC sprouting behavior while inhibition of Raf, PI3-kinase, and Akt kinases shows selective blockade of lumen formation. Inhibition of Src family kinases and Notch leads to increased sprouting coupled to decreased lumen formation, while inhibition of Pak, Mek and mTor kinases block both sprouting and lumen formation. These findings reveal novel downstream biological and signaling activities of defined Factors that are required for the assembly of human EC-lined capillary tube networks.
    DOI:  https://doi.org/10.1016/j.ajpath.2023.08.009
  22. Nat Rev Mol Cell Biol. 2023 Sep 14.
      The forkhead box protein O (FOXO, consisting of FOXO1, FOXO3, FOXO4 and FOXO6) transcription factors are the mammalian orthologues of Caenorhabditis elegans DAF-16, which gained notoriety for its capability to double lifespan in the absence of daf-2 (the gene encoding the worm insulin receptor homologue). Since then, research has provided many mechanistic details on FOXO regulation and FOXO activity. Furthermore, conditional knockout experiments have provided a wealth of data as to how FOXOs control development and homeostasis at the organ and organism levels. The lifespan-extending capabilities of DAF-16/FOXO are highly correlated with their ability to induce stress response pathways. Exogenous and endogenous stress, such as cellular redox stress, are considered the main drivers of the functional decline that characterizes ageing. Functional decline often manifests as disease, and decrease in FOXO activity indeed negatively impacts on major age-related diseases such as cancer and diabetes. In this context, the main function of FOXOs is considered to preserve cellular and organismal homeostasis, through regulation of stress response pathways. Paradoxically, the same FOXO-mediated responses can also aid the survival of dysfunctional cells once these eventually emerge. This general property to control stress responses may underlie the complex and less-evident roles of FOXOs in human lifespan as opposed to model organisms such as C. elegans.
    DOI:  https://doi.org/10.1038/s41580-023-00649-0
  23. bioRxiv. 2023 Aug 31. pii: 2023.08.30.554643. [Epub ahead of print]
      The protein kinase mechanistic target of rapamycin complex 1 (mTORC1) is one of the primary triggers for initiating cap-dependent translation. Amongst its functions, mTORC1 phosphorylates eIF4E-binding proteins (4E-BPs), which prevents them from binding to eIF4E and thereby enables translation initiation. mTORC1 signaling is required for multiple forms of protein synthesis-dependent synaptic plasticity and various forms of long-term memory (LTM), including associative threat memory. However, the approaches used thus far to target mTORC1 and its effectors, such as pharmacological inhibitors or genetic knockouts, lack fine spatial and temporal control. The development of a conditional and inducible eIF4E knockdown mouse line partially solved the issue of spatial control, but still lacked optimal temporal control to study memory consolidation. Here, we have designed a novel optogenetic tool (Opto4E-BP) for cell type-specific, light-dependent regulation of eIF4E in the brain. We show that light-activation of Opto4E-BP decreases protein synthesis in HEK cells and primary mouse neurons. In situ , light-activation of Opto4E-BP in excitatory neurons decreased protein synthesis in acute amygdala slices. Finally, light activation of Opto4E-BP in principal excitatory neurons in the lateral amygdala (LA) of mice after training blocked the consolidation of LTM. The development of this novel optogenetic tool to modulate eIF4E-dependent translation with spatiotemporal precision will permit future studies to unravel the complex relationship between protein synthesis and the consolidation of LTM.
    DOI:  https://doi.org/10.1101/2023.08.30.554643
  24. Nat Methods. 2023 Sep 14.
      Studies with temporal or spatial resolution are crucial to understand the molecular dynamics and spatial dependencies underlying a biological process or system. With advances in high-throughput omic technologies, time- and space-resolved molecular measurements at scale are increasingly accessible, providing new opportunities to study the role of timing or structure in a wide range of biological questions. At the same time, analyses of the data being generated in the context of spatiotemporal studies entail new challenges that need to be considered, including the need to account for temporal and spatial dependencies and compare them across different scales, biological samples or conditions. In this Review, we provide an overview of common principles and challenges in the analysis of temporal and spatial omics data. We discuss statistical concepts to model temporal and spatial dependencies and highlight opportunities for adapting existing analysis methods to data with temporal and spatial dimensions.
    DOI:  https://doi.org/10.1038/s41592-023-01992-y
  25. EMBO J. 2023 Sep 15. e113928
      To fulfill their function, pancreatic beta cells require precise nutrient-sensing mechanisms that control insulin production. Transcription factor EB (TFEB) and its homolog TFE3 have emerged as crucial regulators of the adaptive response of cell metabolism to environmental cues. Here, we show that TFEB and TFE3 regulate beta-cell function and insulin gene expression in response to variations in nutrient availability. We found that nutrient deprivation in beta cells promoted TFEB/TFE3 activation, which resulted in suppression of insulin gene expression. TFEB overexpression was sufficient to inhibit insulin transcription, whereas beta cells depleted of both TFEB and TFE3 failed to suppress insulin gene expression in response to amino acid deprivation. Interestingly, ChIP-seq analysis showed binding of TFEB to super-enhancer regions that regulate insulin transcription. Conditional, beta-cell-specific, Tfeb-overexpressing, and Tfeb/Tfe3 double-KO mice showed severe alteration of insulin transcription, secretion, and glucose tolerance, indicating that TFEB and TFE3 are important physiological mediators of pancreatic function. Our findings reveal a nutrient-controlled transcriptional mechanism that regulates insulin production, thus playing a key role in glucose homeostasis at both cellular and organismal levels.
    Keywords:  TFEB; beta cells; glucose homeostasis; insulin; mTORC1
    DOI:  https://doi.org/10.15252/embj.2023113928
  26. Cell Rep. 2023 Sep 08. pii: S2211-1247(23)01125-7. [Epub ahead of print]42(9): 113114
      The transcription factor DUX4 regulates a portion of the zygotic gene activation (ZGA) program in the early embryo. Many cancers express DUX4 but it is unknown whether this generates cells similar to early embryonic stem cells. Here we identified cancer cell lines that express DUX4 and showed that DUX4 is transiently expressed in a small subset of the cells. DUX4 expression activates the DUX4-regulated ZGA transcriptional program, the subsequent 8C-like program, and markers of early embryonic lineages, while suppressing steady-state and interferon-induced MHC class I expression. Although DUX4 was expressed in a small number of cells under standard culture conditions, DNA damage or changes in growth conditions increased the fraction of cells expressing DUX4 and its downstream programs. Our demonstration that transient expression of endogenous DUX4 in cancer cells induces a metastable early embryonic stem cell program and suppresses antigen presentation has implications for cancer growth, progression, and immune evasion.
    Keywords:  CP: Cancer; DUX4; Dux; HLA; MHC; cancer; stem cell; totipotent; zygotic gene activation
    DOI:  https://doi.org/10.1016/j.celrep.2023.113114
  27. Cell Chem Biol. 2023 Sep 01. pii: S2451-9456(23)00281-7. [Epub ahead of print]
      Over the last two decades, the rapidly expanding field of tumor metabolism has enhanced our knowledge of the impact of nutrient availability on metabolic reprogramming in cancer. Apart from established roles in cancer cells themselves, various nutrients, metabolic enzymes, and stress responses are key to the activities of tumor microenvironmental immune, fibroblastic, endothelial, and other cell types that support malignant transformation. In this article, we review our current understanding of how nutrient availability affects metabolic pathways and responses in both cancer and "stromal" cells, by dissecting major examples and their regulation of cellular activity. Understanding the relationship of nutrient availability to cellular behaviors in the tumor ecosystem will broaden the horizon of exploiting novel therapeutic vulnerabilities in cancer.
    Keywords:  Cancer metabolism; cancer therapeutics; cancer-associated fibroblasts; immune cell metabolism; nutrient exchange; stress responses; tumor microenvironment
    DOI:  https://doi.org/10.1016/j.chembiol.2023.08.011
  28. bioRxiv. 2023 Aug 30. pii: 2023.08.29.555449. [Epub ahead of print]
      Receptor tyrosine kinase signaling is characterized by complex webs of interconnected pathways that regulate diverse cellular functions. The complexity of signaling is a barrier to understanding the pathways that control any particular function. In this work, we use a novel combination of approaches and a new click chemistry probe to determine the role of one pathway in regulating cell surface expression of an ion channel and a receptor tyrosine kinase. We applied an optogenetic approach to uncouple activation of the PI3K pathway from other pathways downstream of RTK activation. In this context, we used genetic code expansion to introduce a click chemistry noncanonical amino acid into the extracellular side of membrane proteins. Applying a cell-impermeant click chemistry fluorophore allowed us to visualize delivery of membrane proteins to the PM in real time. Using these approaches, we demonstrate that activation of PI3K, without activating other pathways downstream of RTK signaling, is sufficient to traffic the TRPV1 ion channels and insulin receptors to the plasma membrane.
    DOI:  https://doi.org/10.1101/2023.08.29.555449
  29. bioRxiv. 2023 Aug 28. pii: 2023.08.26.554851. [Epub ahead of print]
      Chemical probes interrogate disease mechanisms at the molecular level by linking genetic changes to observable traits. However, comprehensive chemical screens in diverse biological models are impractical. To address this challenge, we developed ChemProbe, a model that predicts cellular sensitivity to hundreds of molecular probes and drugs by learning to combine transcriptomes and chemical structures. Using ChemProbe, we inferred the chemical sensitivity of cancer cell lines and tumor samples and analyzed how the model makes predictions. We retrospectively evaluated drug response predictions for precision breast cancer treatment and prospectively validated chemical sensitivity predictions in new cellular models, including a genetically modified cell line. Our model interpretation analysis identified transcriptome features reflecting compound targets and protein network modules, identifying genes that drive ferroptosis. ChemProbe is an interpretable in silico screening tool that allows researchers to measure cellular response to diverse compounds, facilitating research into molecular mechanisms of chemical sensitivity.
    DOI:  https://doi.org/10.1101/2023.08.26.554851
  30. Nat Commun. 2023 Sep 11. 14(1): 5587
      CRISPR-interference (CRISPRi), a highly effective method for silencing genes in mammalian cells, employs an enzymatically dead form of Cas9 (dCas9) complexed with one or more guide RNAs (gRNAs) with 20 nucleotides (nt) of complementarity to transcription initiation sites of target genes. Such gRNA/dCas9 complexes bind to DNA, impeding transcription of the targeted locus. Here, we present an alternative gene-suppression strategy using active Cas9 complexed with truncated gRNAs (tgRNAs). Cas9/tgRNA complexes bind to specific target sites without triggering DNA cleavage. When targeted near transcriptional start sites, these short 14-15 nts tgRNAs efficiently repress expression of several target genes throughout somatic tissues in Drosophila melanogaster without generating any detectable target site mutations. tgRNAs also can activate target gene expression when complexed with a Cas9-VPR fusion protein or modulate enhancer activity, and can be incorporated into a gene-drive, wherein a traditional gRNA sustains drive while a tgRNA inhibits target gene expression.
    DOI:  https://doi.org/10.1038/s41467-023-40836-3
  31. Annu Rev Genet. 2023 Sep 14.
      Many human phenotypes are impossible to recapitulate in model organisms or immortalized human cell lines. Induced pluripotent stem cells (iPSCs) offer a way to study disease mechanisms in a variety of differentiated cell types while circumventing ethical and practical issues associated with finite tissue sources and postmortem states. Here, we discuss the broad utility of iPSCs in genetic medicine and describe how they are being used to study musculoskeletal, pulmonary, neurologic, and cardiac phenotypes. We summarize the particular challenges presented by each organ system and describe how iPSC models are being used to address them. Finally, we discuss emerging iPSC-derived organoid models and the potential value that they can bring to studies of human disease. Expected final online publication date for the Annual Review of Genetics, Volume 57 is November 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    DOI:  https://doi.org/10.1146/annurev-genet-022123-090319
  32. J Cell Sci. 2023 09 01. pii: jcs260990. [Epub ahead of print]136(17):
      Conditional reprogramming is a cell culture technique that effectively immortalizes epithelial cells with normal genotypes by renewing epidermal stem cells. Y-27632, a compound that promotes conditional reprogramming through an unknown mechanism, was developed to inhibit the two Rho-associated kinase (ROCK) isoforms. We used human foreskin keratinocytes (HFKs) to study the role of Y-27632 in conditional reprogramming and learn how ROCKs control epidermal stem cell renewal. In conditional reprogramming, Y-27632 increased HFK adherence to culture dishes, progression through S, G2 and M phases of the cell cycle, and epidermal stem cell marker levels. Although this correlated with ROCK inhibition by Y-27632, we generated CRISPR-Cas9-mediated HFK ROCK knockouts to test the direct role of ROCK inhibition. Knockout of single ROCK isoforms was insufficient to disrupt ROCK activity or promote HFK propagation without Y-27632. Although ROCK activity was reduced, HFKs with double knockout of ROCK1 and ROCK2 still required Y-27632 to propagate. Y-27632 was the most effective among the ROCK inhibitors we tested at promoting HFK proliferation and epidermal stem cell marker expression. Thus, the ability of Y-27632 to promote an epidermal stem cell state in conditional reprogramming not only depends upon ROCK inhibition but also acts via as-yet-unidentified mechanisms. Epidermal stem cell renewal might in part be regulated by ROCKs, but also involves additional pathways.
    Keywords:  Conditional reprogramming; Epidermal stem cells; Rho-associated kinase; Rho-associated kinase inhibitors; Y-27632
    DOI:  https://doi.org/10.1242/jcs.260990