bims-pideca Biomed News
on Class IA PI3K signalling in development and cancer
Issue of 2023–05–07
twenty-one papers selected by
Ralitsa Radostinova Madsen, MRC-PPU



  1. bioRxiv. 2023 Apr 17. pii: 2023.04.17.537203. [Epub ahead of print]
      The phosphoinositide 3-kinase (PI3K)/AKT pathway plays crucial roles in cell viability and protein synthesis and is frequently co-opted by viruses to support their replication. Although many viruses maintain high levels of AKT activity during infection, other viruses, such as vesicular stomatitis virus and human cytomegalovirus (HCMV), cause AKT to accumulate in an inactive state. To efficiently replicate, HCMV requires FoxO transcription factors to localize to the infected cell nucleus (Zhang et. al. mBio 2022), a process directly antagonized by AKT. Therefore, we sought to investigate how HCMV inactivates AKT to achieve this. Subcellular fractionation and live cell imaging studies indicated that AKT failed to recruit to membranes upon serum-stimulation of infected cells. However, UV-inactivated virions were unable to render AKT non-responsive to serum, indicating a requirement for de novo viral gene expression. Interestingly, we were able to identify that UL38 (pUL38), a viral activator of mTORC1, is required to diminish AKT responsiveness to serum. mTORC1 contributes to insulin resistance by causing proteasomal degradation of insulin receptor substrate (IRS) proteins, such as IRS1, which are necessary for the recruitment of PI3K to growth factor receptors. In cells infected with a recombinant HCMV disrupted for UL38 , AKT responsiveness to serum is retained and IRS1 is not degraded. Furthermore, ectopic expression of UL38 in uninfected cells induces IRS1 degradation, inactivating AKT. These effects of UL38 were reversed by the mTORC1 inhibitor, rapamycin. Collectively, our results demonstrate that HCMV relies upon a cell-intrinsic negative feedback loop to render AKT inactive during productive infection.
    DOI:  https://doi.org/10.1101/2023.04.17.537203
  2. Biochem J. 2023 May 05. pii: BCJ20220493. [Epub ahead of print]
      IQGAP1 is a multi-domain cancer-associated protein that serves as a scaffold protein for multiple signaling pathways. Numerous binding partners have been found for the calponin homology, IQ and GAP-related domains in IQGAP1. Identification of a binding partner for its WW domain has proven elusive, however, even though a cell-penetrating peptide derived from this domain has marked anti-tumor activity. Here, using in vitro binding assays with human proteins and co-precipitation from human cells, we show that the WW domain of human IQGAP1 binds directly to the p110α catalytic subunit of phosphoinositide 3-kinase (PI3K). In contrast, the WW domain does not bind to ERK1/2, MEK1/2, or the p85α regulatory subunit of PI3K when p85α is expressed alone. However, the WW domain is able to bind to the p110α/p85α heterodimer when both subunits are co-expressed, as well as to the mutationally activated p110α/p65α heterodimer. We present a model of the structure of the IQGAP1 WW domain, and experimentally identify key residues in the hydrophobic core and beta strands of the WW domain that are required for binding to p110α. These findings contribute to a more precise understanding of IQGAP1-mediated scaffolding, and of how IQGAP1-derived therapeutic peptides might inhibit tumorigenesis.
    Keywords:  extracellular signal-regulated kinases; intracellular signaling; molecular scaffolds; phosphoinositide 3-kinase
    DOI:  https://doi.org/10.1042/BCJ20220493
  3. PLoS Comput Biol. 2023 May 01. 19(5): e1011082
      Cancer chemotherapy combines multiple drugs, but predicting the effects of drug combinations on cancer cell proliferation remains challenging, even for simple in vitro systems. We hypothesized that by combining knowledge of single drug dose responses and cell state transition network dynamics, we could predict how a population of cancer cells will respond to drug combinations. We tested this hypothesis here using three targeted inhibitors of different cell cycle states in two different cell lines in vitro. We formulated a Markov model to capture temporal cell state transitions between different cell cycle phases, with single drug data constraining how drug doses affect transition rates. This model was able to predict the landscape of all three different pairwise drug combinations across all dose ranges for both cell lines with no additional data. While further application to different cell lines, more drugs, additional cell state networks, and more complex co-culture or in vivo systems remain, this work demonstrates how currently available or attainable information could be sufficient for prediction of drug combination response for single cell lines in vitro.
    DOI:  https://doi.org/10.1371/journal.pcbi.1011082
  4. Nat Commun. 2023 May 04. 14(1): 2581
      Many signaling and other genes known as "hidden" drivers may not be genetically or epigenetically altered or differentially expressed at the mRNA or protein levels, but, rather, drive a phenotype such as tumorigenesis via post-translational modification or other mechanisms. However, conventional approaches based on genomics or differential expression are limited in exposing such hidden drivers. Here, we present a comprehensive algorithm and toolkit NetBID2 (data-driven network-based Bayesian inference of drivers, version 2), which reverse-engineers context-specific interactomes and integrates network activity inferred from large-scale multi-omics data, empowering the identification of hidden drivers that could not be detected by traditional analyses. NetBID2 has substantially re-engineered the previous prototype version by providing versatile data visualization and sophisticated statistical analyses, which strongly facilitate researchers for result interpretation through end-to-end multi-omics data analysis. We demonstrate the power of NetBID2 using three hidden driver examples. We deploy NetBID2 Viewer, Runner, and Cloud apps with 145 context-specific gene regulatory and signaling networks across normal tissues and paediatric and adult cancers to facilitate end-to-end analysis, real-time interactive visualization and cloud-based data sharing. NetBID2 is freely available at https://jyyulab.github.io/NetBID .
    DOI:  https://doi.org/10.1038/s41467-023-38335-6
  5. bioRxiv. 2023 Apr 26. pii: 2023.04.19.537364. [Epub ahead of print]
      Gene regulatory networks within cells modulate the expression of the genome in re-sponse to signals and changing environmental conditions. Reconstructions of gene regulatory networks can reveal the information processing and control principles used by cells to maintain homeostasis and execute cell-state transitions. Here, we intro-duce a computational framework, D-SPIN, that generates quantitative models of gene-regulatory networks from single-cell mRNA-seq data sets collected across thousands of distinct perturbation conditions. D-SPIN models the cell as a collection of interacting gene-expression programs, and constructs a probabilistic model to infer regulatory in-teractions between gene-expression programs and external perturbations. Using large perturb-seq and drug-response data sets, we demonstrate that D-SPIN models reveal the organization of cellular pathways, sub-functions of macromolecular complexes, and the logic of cellular regulation of transcription, translation, metabolism, and protein degradation in response to gene knock-down perturbations. D-SPIN can also be ap-plied to dissect drug response mechanisms in heterogeneous cell-populations, elucidat-ing how combinations of immunomodulatory drugs can induce novel cell states through additive recruitment of gene expression programs. D-SPIN provides a computational framework for constructing interpretable models of gene-regulatory networks to reveal principles of cellular information processing and physiological control.
    DOI:  https://doi.org/10.1101/2023.04.19.537364
  6. Sci Adv. 2023 04 28. 9(17): eadf9063
      Aberrant AKT activation occurs in a number of cancers, metabolic syndrome, and immune disorders, making it an important target for the treatment of many diseases. To monitor spatial and temporal AKT activity in a live setting, we generated an Akt-FRET biosensor mouse that allows longitudinal assessment of AKT activity using intravital imaging in conjunction with image stabilization and optical window technology. We demonstrate the sensitivity of the Akt-FRET biosensor mouse using various cancer models and verify its suitability to monitor response to drug targeting in spheroid and organotypic models. We also show that the dynamics of AKT activation can be monitored in real time in diverse tissues, including in individual islets of the pancreas, in the brown and white adipose tissue, and in the skeletal muscle. Thus, the Akt-FRET biosensor mouse provides an important tool to study AKT dynamics in live tissue contexts and has broad preclinical applications.
    DOI:  https://doi.org/10.1126/sciadv.adf9063
  7. Commun Biol. 2023 May 04. 6(1): 484
      Time-lapse imaging is a powerful approach to gain insight into the dynamic responses of cells, but the quantitative analysis of morphological changes over time remains challenging. Here, we exploit the concept of "trajectory embedding" to analyze cellular behavior using morphological feature trajectory histories-that is, multiple time points simultaneously, rather than the more common practice of examining morphological feature time courses in single timepoint (snapshot) morphological features. We apply this approach to analyze live-cell images of MCF10A mammary epithelial cells after treatment with a panel of microenvironmental perturbagens that strongly modulate cell motility, morphology, and cell cycle behavior. Our morphodynamical trajectory embedding analysis constructs a shared cell state landscape revealing ligand-specific regulation of cell state transitions and enables quantitative and descriptive models of single-cell trajectories. Additionally, we show that incorporation of trajectories into single-cell morphological analysis enables (i) systematic characterization of cell state trajectories, (ii) better separation of phenotypes, and (iii) more descriptive models of ligand-induced differences as compared to snapshot-based analysis. This morphodynamical trajectory embedding is broadly applicable to the quantitative analysis of cell responses via live-cell imaging across many biological and biomedical applications.
    DOI:  https://doi.org/10.1038/s42003-023-04837-8
  8. J Cell Sci. 2023 May 03. pii: jcs.260458. [Epub ahead of print]
      Transient changes in intracellular pH (pHi) regulate normal cell behaviors, but roles for spatiotemporal pHi dynamics in single-cell behaviors remains unclear. Here, we mapped single-cell spatiotemporal pHi dynamics during mammalian cell cycle progression both with and without cell cycle synchronization. We found that single-cell pHi is dynamic throughout the cell cycle: pHi decreases at G1/S, increases in mid-S, decreases at late S, increases at G2/M, and rapidly decreases during mitosis. Importantly, while pHi is highly dynamic in dividing cells, non-dividing cells have attenuated pHi dynamics. Using two independent pHi manipulation methods, we found that low pHi inhibits completion of S phase while increased pHi promotes both S/G2 and G2/M transitions. Our data also suggest that low pHi cues G1 exit, with decreased pHi shortening G1 and increased pHi elongating G1. Furthermore, dynamic pHi is required for S phase timing, as high pHi elongates S phase and low pHi inhibits S/G2 transition. This work reveals spatiotemporal pHi dynamics are necessary for cell cycle progression at multiple phase transitions in single human cells.
    Keywords:  Cell Cycle; Intracellular pH; Single-Cell Methods
    DOI:  https://doi.org/10.1242/jcs.260458
  9. Elife. 2023 May 02. pii: e81464. [Epub ahead of print]12
      Correlation between objects is prone to occur coincidentally, and exploring correlation or association in most situations does not answer scientific questions rich in causality. Causal discovery (also called causal inference) infers causal interactions between objects from observational data. Inferred causal interactions in single cells provide valuable clues for investigating molecular interaction and gene regulation, identifying critical diagnostic and therapeutic targets, and designing experimental and clinical interventions. The report of causal discovery methods and generation of single-cell data make applying causal discovery to single-cells a promising direction. However, how to evaluate and choose causal discovery methods and how to develop workflow and platform remain challenges. We report the workflow and platform CausalCell (http://www.gaemons.net/causalcell/causalDiscovery/) for performing single-cell causal discovery. The workflow/platform is developed upon benchmarking four kinds of causal discovery methods and is examined by analysing multiple scRNA-seq datasets. Our results suggest that different situations call for different methods and the constraint-based PC algorithm plus kernel-based conditional independence tests suit for most situations. Relevant issues are discussed and tips for best practices are recommended.
    Keywords:  computational biology; human; systems biology
    DOI:  https://doi.org/10.7554/eLife.81464
  10. Sci Adv. 2023 May 03. 9(18): eadf0115
      The metabolite acetyl-CoA is necessary for both lipid synthesis in the cytosol and histone acetylation in the nucleus. The two canonical precursors to acetyl-CoA in the nuclear-cytoplasmic compartment are citrate and acetate, which are processed to acetyl-CoA by ATP-citrate lyase (ACLY) and acyl-CoA synthetase short-chain 2 (ACSS2), respectively. It is unclear whether other substantial routes to nuclear-cytosolic acetyl-CoA exist. To investigate this, we generated cancer cell lines lacking both ACLY and ACSS2 [double knockout (DKO) cells]. Using stable isotope tracing, we show that both glucose and fatty acids contribute to acetyl-CoA pools and histone acetylation in DKO cells and that acetylcarnitine shuttling can transfer two-carbon units from mitochondria to cytosol. Further, in the absence of ACLY, glucose can feed fatty acid synthesis in a carnitine responsive and carnitine acetyltransferase (CrAT)-dependent manner. The data define acetylcarnitine as an ACLY- and ACSS2-independent precursor to nuclear-cytosolic acetyl-CoA that can support acetylation, fatty acid synthesis, and cell growth.
    DOI:  https://doi.org/10.1126/sciadv.adf0115
  11. Cell. 2023 Apr 21. pii: S0092-8674(23)00331-8. [Epub ahead of print]
      Applications of prime editing are often limited due to insufficient efficiencies, and it can require substantial time and resources to determine the most efficient pegRNAs and prime editors (PEs) to generate a desired edit under various experimental conditions. Here, we evaluated prime editing efficiencies for a total of 338,996 pairs of pegRNAs including 3,979 epegRNAs and target sequences in an error-free manner. These datasets enabled a systematic determination of factors affecting prime editing efficiencies. Then, we developed computational models, named DeepPrime and DeepPrime-FT, that can predict prime editing efficiencies for eight prime editing systems in seven cell types for all possible types of editing of up to 3 base pairs. We also extensively profiled the prime editing efficiencies at mismatched targets and developed a computational model predicting editing efficiencies at such targets. These computational models, together with our improved knowledge about prime editing efficiency determinants, will greatly facilitate prime editing applications.
    Keywords:  deep learning; efficiency; features; high-throughput evaluations; off-target effects; prediction; prime editing; prime editors; sequence
    DOI:  https://doi.org/10.1016/j.cell.2023.03.034
  12. Science. 2023 May 05. 380(6644): 443
      Imaging technique uses standard cell-specific antibodies.
    DOI:  https://doi.org/10.1126/science.adi5368
  13. Front Oncol. 2023 ;13 1162694
      High-risk subtypes of B-cell acute lymphoblastic leukemia (B-ALL) are frequently associated with aberrant activation of tyrosine kinases (TKs). These include Ph+ B-ALL driven by BCR-ABL, and Ph-like B-ALL that carries other chromosomal rearrangements and/or gene mutations that activate TK signaling. Currently, the tyrosine kinase inhibitor (TKI) dasatinib is added to chemotherapy as standard of care in Ph+ B-ALL, and TKIs are being tested in clinical trials for Ph-like B-ALL. However, growth factors and nutrients in the leukemia microenvironment can support cell cycle and survival even in cells treated with TKIs targeting the driving oncogene. These stimuli converge on the kinase mTOR, whose elevated activity is associated with poor prognosis. In preclinical models of Ph+ and Ph-like B-ALL, mTOR inhibitors strongly enhance the anti-leukemic efficacy of TKIs. Despite this strong conceptual basis for targeting mTOR in B-ALL, the first two generations of mTOR inhibitors tested clinically (rapalogs and mTOR kinase inhibitors) have not demonstrated a clear therapeutic window. The aim of this review is to introduce new therapeutic strategies to the management of Ph-like B-ALL. We discuss novel approaches to targeting mTOR in B-ALL with potential to overcome the limitations of previous mTOR inhibitor classes. One approach is to apply third-generation bi-steric inhibitors that are selective for mTOR complex-1 (mTORC1) and show preclinical efficacy with intermittent dosing. A distinct, non-pharmacological approach is to use nutrient restriction to target signaling and metabolic dependencies in malignant B-ALL cells. These two new approaches could potentiate TKI efficacy in Ph-like leukemia and improve survival.
    Keywords:  B-ALL; fasting mimicking diet; leukemia; mTOR; metabolism; nutrient restriction; targeted therapy; tyrosine kinase inhibitors
    DOI:  https://doi.org/10.3389/fonc.2023.1162694
  14. EMBO Rep. 2023 May 04. e55439
      Adult autologous human epidermal stem cells can be extensively expanded ex vivo for cell and gene therapy. Identifying the mechanisms involved in stem cell maintenance and defining culture conditions to maintain stemness is critical, because an inadequate environment can result in the rapid conversion of stem cells into progenitors/transient amplifying cells (clonal conversion), with deleterious consequences on the quality of the transplants and their ability to engraft. Here, we demonstrate that cultured human epidermal stem cells respond to a small drop in temperature through thermoTRP channels via mTOR signaling. Exposure of cells to rapamycin or a small drop in temperature induces the nuclear translocation of mTOR with an impact on gene expression. We also demonstrate by single-cell analysis that long-term inhibition of mTORC1 reduces clonal conversion and favors the maintenance of stemness. Taken together, our results demonstrate that human keratinocyte stem cells can adapt to environmental changes (e.g., small variations in temperature) through mTOR signaling and constant inhibition of mTORC1 favors stem cell maintenance, a finding of high importance for regenerative medicine applications.
    Keywords:  TRP channels; keratinocyte stem cells; mTOR; microenvironment; temperature
    DOI:  https://doi.org/10.15252/embr.202255439
  15. Front Syst Biol. 2023 ;pii: 1092341. [Epub ahead of print]3
      Large scale -omics datasets can provide new insights into normal and disease-related biology when analyzed through a systems biology framework. However, technical artefacts present in most -omics datasets due to variations in sample preparation, batching, platform settings, personnel, and other experimental procedures prevent useful analyses of such data without prior adjustment for these technical factors. Here, we demonstrate a tunable median polish of ratio (TAMPOR) approach for batch effect correction and agglomeration of multiple, multi-batch, site-specific cohorts into a single analyte abundance data matrix that is suitable for systems biology analyses. We illustrate the utility and versatility of TAMPOR through four distinct use cases where the method has been applied to different proteomic datasets, some of which contain a specific defect that must be addressed prior to analysis. We compare quality control metrics and sources of variance before and after application of TAMPOR to show that TAMPOR is effective at removing batch effects and other unwanted sources of variance in -omics data. We also show how TAMPOR can be used to harmonize -omics datasets even when the data are acquired using different analytical approaches. TAMPOR is a powerful and flexible approach for cleaning and harmonization of -omics data prior to downstream systems biology analysis.
    Keywords:  Batch correction; TAMPOR; median polish; multi-cohort; multi-platform; multiomics; proteomics
    DOI:  https://doi.org/10.3389/fsysb.2023.1092341
  16. Nat Aging. 2023 May 04.
      Inhibition of the protein kinase mechanistic target of rapamycin (mTOR) with the Food and Drug Administration (FDA)-approved therapeutic rapamycin promotes health and longevity in diverse model organisms. More recently, specific inhibition of mTORC1 to treat aging-related conditions has become the goal of basic and translational scientists, clinicians and biotechnology companies. Here, we review the effects of rapamycin on the longevity and survival of both wild-type mice and mouse models of human diseases. We discuss recent clinical trials that have explored whether existing mTOR inhibitors can safely prevent, delay or treat multiple diseases of aging. Finally, we discuss how new molecules may provide routes to the safer and more selective inhibition of mTOR complex 1 (mTORC1) in the decade ahead. We conclude by discussing what work remains to be done and the questions that will need to be addressed to make mTOR inhibitors part of the standard of care for diseases of aging.
    DOI:  https://doi.org/10.1038/s43587-023-00416-y
  17. Cell Death Dis. 2023 May 02. 14(5): 299
      In response to stress, cells make a critical decision to arrest or undergo apoptosis, mediated in large part by the tumor suppressor p53. Yet the mechanisms of these cell fate decisions remain largely unknown, particularly in normal cells. Here, we define an incoherent feed-forward loop in non-transformed human squamous epithelial cells involving p53 and the zinc-finger transcription factor KLF5 that dictates responses to differing levels of cellular stress from UV irradiation or oxidative stress. In normal unstressed human squamous epithelial cells, KLF5 complexes with SIN3A and HDAC2 repress TP53, allowing cells to proliferate. With moderate stress, this complex is disrupted, and TP53 is induced; KLF5 then acts as a molecular switch for p53 function by transactivating AKT1 and AKT3, which direct cells toward survival. By contrast, severe stress results in KLF5 loss, such that AKT1 and AKT3 are not induced, and cells preferentially undergo apoptosis. Thus, in human squamous epithelial cells, KLF5 gates the response to UV or oxidative stress to determine the p53 output of growth arrest or apoptosis.
    DOI:  https://doi.org/10.1038/s41419-023-05731-1
  18. Cancer Res. 2023 May 04. pii: CAN-22-2996. [Epub ahead of print]
      Major advances have been made in the field of precision medicine for treating cancer. However, many open questions remain that need to be answered to realize the goal of matching every cancer patient to the most efficacious therapy. To facilitate these efforts, we have developed CellMinerCDB:NCATS (https://discover.nci.nih.gov/rsconnect/cellminercdb_ncats/), which makes available activity information for 2,675 drugs and compounds, including multiple non-oncology drugs and 1,866 drugs and compounds unique to the National Center for Advancing Translational Sciences (NCATS). CellMinerCDB:NCATS comprises 183 cancer cell lines with 72 unique to NCATS including some from previously understudied tissues of origin. Multiple forms of data from different institutes are integrated, including single and combination drug activity, DNA copy number, methylation and mutation, transcriptome, protein levels, histone acetylation and methylation, metabolites, CRISPR and miscellaneous signatures. Curation of cell lines and drug names enables cross-database (CDB) analyses. Comparison of the datasets is made possible by the overlap between cell lines and drugs across databases. Multiple univariate and multivariate analysis tools are built-in, including linear regression and LASSO. Examples have been presented here for the clinical topoisomerase I (TOP1) inhibitors topotecan and irinotecan/SN-38. This web-application provides both substantial new data and significant pharmacogenomic integration allowing exploration of interrelationships.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-22-2996
  19. bioRxiv. 2023 Apr 17. pii: 2023.04.17.537179. [Epub ahead of print]
      Restoring function in chronic stages of spinal cord injury (SCI) has often been met with failure or reduced efficacy when regenerative strategies are delayed past the acute or sub-acute stages of injury. Restoring function in the chronically injured spinal cord remains a critical challenge. We found that a single injection of retrogradely transported adeno-associated viruses (AAVrg) to knockout the phosphatase and tensin homolog protein (PTEN) in chronic SCI can effectively target both damaged and spared axons and restore locomotor functions in near-complete injury models. AAVrg's were injected to deliver cre recombinase and/or a red fluorescent protein (RFP) under the human Synapsin 1 promoter (hSyn1) into the spinal cords of C57BL/6 PTEN FloxΔ / Δ mice to knockout PTEN (PTEN-KO) in a severe thoracic SCI crush model at both acute and chronic time points. PTEN-KO improved locomotor abilities in both acute and chronic SCI conditions over a 9-week period. Regardless of whether treatment was initiated at the time of injury (acute), or three months after SCI (chronic), mice with limited hindlimb joint movement gained hindlimb weight support after treatment. Interestingly, functional improvements were not sustained beyond 9 weeks coincident with a loss of RFP reporter-gene expression and a near-complete loss of treatment-associated functional recovery by 6 months post-treatment. Treatment effects were also specific to severely injured mice; animals with weight support at the time of treatment lost function over a 6-month period. Retrograde tracing with Fluorogold revealed viable neurons throughout the motor cortex despite a loss of RFP expression at 9 weeks post-PTEN-KO. However, few Fluorogold labeled neurons were detected within the motor cortex at 6 months post-treatment. BDA labeling from the motor cortex revealed a dense corticospinal tract (CST) bundle in all groups except chronically treated PTEN-KO mice indicating a potential long-term toxic effect of PTEN-KO to neurons in the motor cortex. PTEN-KO mice had significantly more β - tubulin III labeled axons within the lesion when treatment was delivered acutely, but not chronically post-SCI. In conclusion, we have found that using AAVrg's to knockout PTEN is an effective manipulation capable of restoring motor functions in chronic SCI and can enhance axon growth of currently unidentified axon populations when delivered acutely after injury. However, the long-term consequences of PTEN-KO may exert neurotoxic effects.
    DOI:  https://doi.org/10.1101/2023.04.17.537179
  20. Nat Biomed Eng. 2023 May 01.
      The targeted insertion and stable expression of a large genetic payload in primary human cells demands methods that are robust, efficient and easy to implement. Large payload insertion via retroviruses is typically semi-random and hindered by transgene silencing. Leveraging homology-directed repair to place payloads under the control of endogenous essential genes can overcome silencing but often results in low knock-in efficiencies and cytotoxicity. Here we report a method for the knock-in and stable expression of a large payload and for the simultaneous knock-in of two genes at two endogenous loci. The method, which we named CLIP (for 'CRISPR for long-fragment integration via pseudovirus'), leverages an integrase-deficient lentivirus encoding a payload flanked by homology arms and 'cut sites' to insert the payload upstream and in-frame of an endogenous essential gene, followed by the delivery of a CRISPR-associated ribonucleoprotein complex via electroporation. We show that CLIP enables the efficient insertion and stable expression of large payloads and of two difficult-to-express viral antigens in primary T cells at low cytotoxicity. CLIP offers a scalable and efficient method for manufacturing engineered primary cells.
    DOI:  https://doi.org/10.1038/s41551-023-01037-x