bims-pideca Biomed News
on Class IA PI3K signalling in development and cancer
Issue of 2023–04–02
28 papers selected by
Ralitsa Radostinova Madsen, MRC-PPU



  1. Sci Adv. 2023 Mar 31. 9(13): eadd6911
      Dynamic positioning of endothelial tip and stalk cells, via the interplay between VEGFR2 and NOTCH signaling, is essential for angiogenesis. VEGFR2 activates PI3K, which phosphorylates PI(4,5)P2 to PI(3,4,5)P3, activating AKT; however, PI3K/AKT does not direct tip cell specification. We report that PI(4,5)P2 hydrolysis by the phosphoinositide-5-phosphatase, INPP5K, contributes to angiogenesis. INPP5K ablation disrupted tip cell specification and impaired embryonic angiogenesis associated with enhanced DLL4/NOTCH signaling. INPP5K degraded a pool of PI(4,5)P2 generated by PIP5K1C phosphorylation of PI(4)P in endothelial cells. INPP5K ablation increased PI(4,5)P2, thereby releasing β-catenin from the plasma membrane, and concurrently increased PI(3,4,5)P3-dependent AKT activation, conditions that licensed DLL4/NOTCH transcription. Suppression of PI(4,5)P2 in INPP5K-siRNA cells by PIP5K1C-siRNA, restored β-catenin membrane localization and normalized AKT signaling. Pharmacological NOTCH or AKT inhibition in vivo or genetic β-catenin attenuation rescued angiogenesis defects in INPP5K-null mice. Therefore, PI(4,5)P2 is critical for β-catenin/DLL4/NOTCH signaling, which governs tip cell specification during angiogenesis.
    DOI:  https://doi.org/10.1126/sciadv.add6911
  2. Cell Death Dis. 2023 Mar 28. 14(3): 217
      Atypically expressed transglutaminase 2 (TG2) has been identified as a poor prognostic factor in a variety of cancers. In this study, we evaluated the contribution of TG2 to the prolonged cell survival of differentiated acute promyelocytic leukaemia (APL) cells in response to the standard treatment with combined retinoic acid (ATRA) and arsenic trioxide (ATO). We report that one advantage of ATRA + ATO treatment compared to ATRA alone diminishes the amount of activated and non-activated CD11b/CD18 and CD11c/CD18 cell surface integrin receptors. These changes suppress ATRA-induced TG2 docking on the cytosolic part of CD18 β2-integrin subunits and reduce cell survival. In addition, TG2 overexpresses and hyperactivates the phosphatidylinositol-3-kinase (PI3K), phospho-AKT S473, and phospho-mTOR S2481 signalling axis. mTORC2 acts as a functional switch between cell survival and death by promoting the full activation of AKT. We show that TG2 presumably triggers the formation of a signalosome platform, hyperactivates downstream mTORC2-AKT signalling, which in turn phosphorylates and inhibits the activity of FOXO3, a key pro-apoptotic transcription factor. In contrast, the absence of TG2 restores basic phospho-mTOR S2481, phospho-AKT S473, PI3K, and PTEN expression and activity, thereby sensitising APL cells to ATO-induced cell death. We conclude, that atypically expressed TG2 may serve as a hub, facilitating signal transduction via signalosome formation by the CD18 subunit with both PI3K hyperactivation and PTEN inactivation through the PI3K-PTEN cycle in ATRA-treated APL cells.
    DOI:  https://doi.org/10.1038/s41419-023-05748-6
  3. bioRxiv. 2023 Mar 18. pii: 2023.03.17.533017. [Epub ahead of print]
      Epithelial remodeling of the Drosophila retina depends on the generation of pulsatile contractile and protrusive forces that repeatedly contract and expand the apical contacts between the lattice cells (LCs) that form its hexagonal lattice. Phosphoinositide PI(3,4,5)P 3 (PIP 3 ) accumulates around tricellular adherens junctions (tAJs) when cell-cell contacts expand and dissipates when they contract, but its significance in this process is unknown. Here we found that manipulations of Pten or Pi3K that either decreased or increased PIP 3 resulted in similar phenotypes characterized by shortened contacts and a disordered lattice, indicating a requirement for dynamics and turnover of PIP 3 . We further show that these phenotypes are caused by a loss of protrusive branched F-actin, the result of impaired activity of the Rac1 Rho GTPase and the WAVE regulatory complex (WRC). We additionally found that during contact expansion, Pi3K moves into tAJs where it is positioned to promote the cyclical increase of PIP 3 in a spatially and temporally precise manner. Taken together, the results show that dynamic regulation of PIP 3 by Pten and Pi3K is critical for the protrusive phase of junctional remodeling, which is essential for planar epithelial morphogenesis.
    DOI:  https://doi.org/10.1101/2023.03.17.533017
  4. Cells. 2023 Mar 22. pii: 967. [Epub ahead of print]12(6):
      Extracellular-signal-regulated kinase 5 (ERK5) is critical for normal cardiovascular development. Previous studies have defined a canonical pathway for ERK5 activation, showing that ligand stimulation leads to MEK5 activation resulting in dual phosphorylation of ERK5 on Thr218/Tyr220 residues within the activation loop. ERK5 then undergoes a conformational change, facilitating phosphorylation on residues in the C-terminal domain and translocation to the nucleus where it regulates MEF2 transcriptional activity. Our previous research into the importance of ERK5 in endothelial cells highlighted its role in VEGF-mediated tubular morphogenesis and cell survival, suggesting that ERK5 played a unique role in endothelial cells. Our current data show that in contrast to EGF-stimulated HeLa cells, VEGF-mediated ERK5 activation in human dermal microvascular endothelial cells (HDMECs) does not result in C-terminal phosphorylation of ERK5 and translocation to the nucleus, but instead to a more plasma membrane/cytoplasmic localisation. Furthermore, the use of small-molecule inhibitors to MEK5 and ERK5 shows that instead of regulating MEF2 activity, VEGF-mediated ERK5 is important for regulating AKT activity. Our data define a novel pathway for ERK5 activation in endothelial cells leading to cell survival.
    Keywords:  AKT; EGF; EGFR; ERK5; VEGF-A; VEGFR-2; angiogenesis; endothelial cells
    DOI:  https://doi.org/10.3390/cells12060967
  5. J Biol Chem. 2023 Mar 23. pii: S0021-9258(23)00286-7. [Epub ahead of print] 104644
      The mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of mammalian cell growth that is dysregulated in a number of human diseases, including metabolic syndromes, aging and cancer. Structural, biochemical and pharmacological studies that have increased our understanding of how mTORC1 executes growth control often relied upon purified mTORC1 protein. However, current immunoaffinity-based purification methods are expensive, inefficient, and do not necessarily isolate endogenous mTORC1, hampering their overall utility in research. Here we present a simple tool to isolate endogenous mTORC1 from various cellular sources. By recombinantly expressing and isolating mTORC1-binding Rag GTPases from E. Coli and using them as affinity probes, we demonstrate that mTORC1 can be isolated from mouse, bovine and human sources. Our results indicate that mTORC1 isolated by this relatively inexpensive method is catalytically active and amenable to scaling. Collectively, this tool may be utilized to isolate mTORC1 from various cellular sources, organs, and disease contexts, aiding mTORC1-related research.
    DOI:  https://doi.org/10.1016/j.jbc.2023.104644
  6. Curr Issues Mol Biol. 2023 Mar 09. 45(3): 2296-2308
      Insulin signaling plays an important role in the development and progression of cancer since it is involved in proliferation and migration processes. It has been shown that the A isoform of the insulin receptor (IR-A) is often overexpressed, and its stimulation induces changes in the expression of the insulin receptor substrates (IRS-1 and IRS-2), which are expressed differently in the different types of cancer. We study the participation of the insulin substrates IRS-1 and IRS-2 in the insulin signaling pathway in response to insulin and their involvement in the proliferation and migration of the cervical cancer cell line. Our results showed that under basal conditions, the IR-A isoform was predominantly expressed. Stimulation of HeLa cells with 50 nM insulin led to the phosphorylation of IR-A, showing a statistically significant increase at 30 min (p ≤ 0.05). Stimulation of HeLa cells with insulin induces PI3K and AKT phosphorylation through the activation of IRS2, but not IRS1. While PI3K reached the highest level at 30 min after treatment (p ≤ 0.05), AKT had the highest levels from 15 min (p ≤ 0.05) and remained constant for 6 h. ERK1 and ERK2 expression was also observed, but only ERK2 was phosphorylated in a time-dependent manner, reaching a maximum peak 5 min after insulin stimulation. Although no effect on cell proliferation was observed, insulin stimulation of HeLa cells markedly promoted cell migration.
    Keywords:  IRS1; IRS2; PI3K/Akt; cell migration; cervical cancer; insulin receptor
    DOI:  https://doi.org/10.3390/cimb45030148
  7. Nat Commun. 2023 Mar 30. 14(1): 1786
      Unlike CRISPR-Cas9 nucleases, which yield DNA double-strand breaks (DSBs), Cas9 nickases (nCas9s), which are created by replacing key catalytic amino-acid residues in one of the two nuclease domains of S. pyogenesis Cas9 (SpCas9), produce nicks or single-strand breaks. Two SpCas9 variants, namely, nCas9 (D10A) and nCas9 (H840A), which cleave target (guide RNA-pairing) and non-target DNA strands, respectively, are widely used for various purposes, including paired nicking, homology-directed repair, base editing, and prime editing. In an effort to define the off-target nicks caused by these nickases, we perform Digenome-seq, a method based on whole genome sequencing of genomic DNA treated with a nuclease or nickase of interest, and find that nCas9 (H840A) but not nCas9 (D10A) can cleave both strands, producing unwanted DSBs, albeit less efficiently than wild-type Cas9. To inactivate the HNH nuclease domain further, we incorporate additional mutations into nCas9 (H840A). Double-mutant nCas9 (H840A + N863A) does not exhibit the DSB-inducing behavior in vitro and, either alone or in fusion with the M-MLV reverse transcriptase (prime editor, PE2 or PE3), induces a lower frequency of unwanted indels, compared to nCas9 (H840A), caused by error-prone repair of DSBs. When incorporated into prime editor and used with engineered pegRNAs (ePE3), we find that the nCas9 variant (H840A + N854A) dramatically increases the frequency of correct edits, but not unwanted indels, yielding the highest purity of editing outcomes compared to nCas9 (H840A).
    DOI:  https://doi.org/10.1038/s41467-023-37507-8
  8. bioRxiv. 2023 Mar 24. pii: 2023.03.21.533670. [Epub ahead of print]
      Endogenous gene knock-in using CRIPSR is becoming the standard for fluorescent tagging of endogenous proteins. Some protocols, particularly those that utilize insert cassettes that carry a fluorescent protein tag, can yield many types of cells with off-target insertions that have diffuse fluorescent signal throughout the whole cell in addition to scarce cells with on-target gene insertions that show the correct sub-cellular localization of the tagged protein. As such, when searching for cells with on-target integration using flow cytometry, the off-target fluorescent cells yield a high percentage of false positives. Here, we show that by changing the gating used to select for fluorescence during flow cytometry sorting, namely utilizing the width of the signal as opposed to the area, we can highly enrich for positively integrated cells. Reproducible gates were created to select for even minuscule percentages of correct subcellular signal, and these parameters were validated by fluorescence microscopy. This method is a powerful tool to rapidly enhance the generation of cell-lines with correctly integrated gene knock-ins encoding endogenous fluorescent proteins.
    DOI:  https://doi.org/10.1101/2023.03.21.533670
  9. Annu Rev Biochem. 2023 Mar 31.
      The insulin receptor (IR) is a type II receptor tyrosine kinase that plays essential roles in metabolism, growth, and proliferation. Dysregulation of IR signaling is linked to many human diseases, such as diabetes and cancers. The resolution revolution in cryo-electron microscopy has led to the determination of several structures of IR with different numbers of bound insulin molecules in recent years, which have tremendously improved our understanding of how IR is activated by insulin. Here, we review the insulin-induced activation mechanism of IR, including (a) the detailed binding modes and functions of insulin at site 1 and site 2 and (b) the insulin-induced structural transitions that are required for IR activation. We highlight several other key aspects of the activation and regulation of IR signaling and discuss the remaining gaps in our understanding of the IR activation mechanism and potential avenues of future research. Expected final online publication date for the Annual Review of Biochemistry, Volume 92 is June 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    DOI:  https://doi.org/10.1146/annurev-biochem-052521-033250
  10. bioRxiv. 2023 Mar 18. pii: 2023.03.17.533036. [Epub ahead of print]
      Traditional genome-editing reagents such as CRISPR-Cas9 achieve targeted DNA modification by introducing double-strand breaks (DSBs), thereby stimulating localized DNA repair by endogenous cellular repair factors. While highly effective at generating heterogenous knockout mutations, this approach suffers from undesirable byproducts and an inability to control product purity. Here we develop a system in human cells for programmable, DSB-free DNA integration using Type I CRISPR-associated transposons (CASTs). To adapt our previously described CAST systems, we optimized DNA targeting by the QCascade complex through a comprehensive assessment of protein design, and we developed potent transcriptional activators by exploiting the multi-valent recruitment of the AAA+ ATPase, TnsC, to genomic sites targeted by QCascade. After initial detection of plasmid-based transposition, we screened 15 homologous CAST systems from a wide range of bacterial hosts, identified a CAST homolog from Pseudoalteromonas that exhibited improved activity, and increased integration efficiencies through parameter optimization. We further discovered that bacterial ClpX enhances genomic integration by multiple orders of magnitude, and we propose that this critical accessory factor functions to drive active disassembly of the post-transposition CAST complex, akin to its demonstrated role in Mu transposition. Our work highlights the ability to functionally reconstitute complex, multi-component machineries in human cells, and establishes a strong foundation to realize the full potential of CRISPR-associated transposons for human genome engineering.
    DOI:  https://doi.org/10.1101/2023.03.17.533036
  11. Nat Commun. 2023 Mar 25. 14(1): 1668
      Signaling pathways can be activated through various cascades of genes depending on cell identity and biological context. Single-cell atlases now provide the opportunity to inspect such complexity in health and disease. Yet, existing reference tools for pathway scoring resume activity of each pathway to one unique common metric across cell types. Here, we present MAYA, a computational method that enables the automatic detection and scoring of the diverse modes of activation of biological pathways across cell populations. MAYA improves the granularity of pathway analysis by detecting subgroups of genes within reference pathways, each characteristic of a cell population and how it activates a pathway. Using multiple single-cell datasets, we demonstrate the biological relevance of identified modes of activation, the robustness of MAYA to noisy pathway lists and batch effect. MAYA can also predict cell types starting from lists of reference markers in a cluster-free manner. Finally, we show that MAYA reveals common modes of pathway activation in tumor cells across patients, opening the perspective to discover shared therapeutic vulnerabilities.
    DOI:  https://doi.org/10.1038/s41467-023-37410-2
  12. Bioessays. 2023 Mar 30. e2200209
      Protein turnover (PT) has been formally defined only in equilibrium conditions, which is ill-suited to quantify PT during dynamic processes that occur during embryogenesis or (extra) cellular signaling. In this Hypothesis, we propose a definition of PT in an out-of-equilibrium regime that allows the quantification of PT in virtually any biological context. We propose a simple mathematical and conceptual framework applicable to a broad range of available data, such as RNA sequencing coupled with pulsed-SILAC datasets. We apply our framework to a published dataset and show that stimulation of mouse dendritic cells with LPS leads to a proteome-wide change in PT. This is the first quantification of PT out-of-equilibrium, paving the way for the analysis of biological systems in other contexts.
    Keywords:  RNA-seq; SILAC; dynamics; flux analysis; gene expression; out-of-equilibrium; protein turnover
    DOI:  https://doi.org/10.1002/bies.202200209
  13. Dev Cell. 2023 Mar 27. pii: S1534-5807(23)00092-8. [Epub ahead of print]
      3D cell cultures, in particular organoids, are emerging models in the investigation of healthy or diseased tissues. Understanding the complex cellular sociology in organoids requires integration of imaging modalities across spatial and temporal scales. We present a multi-scale imaging approach that traverses millimeter-scale live-cell light microscopy to nanometer-scale volume electron microscopy by performing 3D cell cultures in a single carrier that is amenable to all imaging steps. This allows for following organoids' growth, probing their morphology with fluorescent markers, identifying areas of interest, and analyzing their 3D ultrastructure. We demonstrate this workflow on mouse and human 3D cultures and use automated image segmentation to annotate and quantitatively analyze subcellular structures in patient-derived colorectal cancer organoids. Our analyses identify local organization of diffraction-limited cell junctions in compact and polarized epithelia. The continuum-resolution imaging pipeline is thus suited to fostering basic and translational organoid research by simultaneously exploiting the advantages of light and electron microscopy.
    Keywords:  CLEM; Deep-learning image segmentation; FIB-SEM; Volume EM; cryo-confocal light microscopy; high-pressure freezing; patient-derived organoids
    DOI:  https://doi.org/10.1016/j.devcel.2023.03.001
  14. J Biol Methods. 2022 ;9(4): e163
      Spheroids and organoids are increasingly popular three-dimensional (3D) cell culture models. Spheroid models are more physiologically relevant to a tumor compared to two-dimensional (2D) cultures and organoids are a simplified version of an organ with similar composition. Spheroids are often only formed from a single cell type which does not represent the situation in vivo. However, despite this, both spheroids and organoids can be used in cell migration studies, disease modelling and drug discovery. A drawback of these models is, however, the lack of appropriate analytical tools for high throughput imaging and analysis over a time course. To address this, we have developed an R Shiny app called SpheroidAnalyseR: a simple, fast, effective open-source app that allows the analysis of spheroid or organoid size data generated in a 96-well format. SpheroidAnalyseR processes and analyzes datasets of image measurements that can be obtained via a bespoke software, described herein, that automates spheroid imaging and quantification using the Nikon A1R Confocal Laser Scanning Microscope. However, templates are provided to enable users to input spheroid image measurements obtained by user-preferred methods. SpheroidAnalyseR facilitates outlier identification and removal followed by graphical visualization of spheroid measurements across multiple predefined parameters such as time, cell-type and treatment(s). Spheroid imaging and analysis can, thus, be reduced from hours to minutes, removing the requirement for substantial manual data manipulation in a spreadsheet application. The combination of spheroid generation in 96-well ultra-low attachment microplates, imaging using our bespoke software, and analysis using SpheroidAnalyseR toolkit allows high throughput, longitudinal quantification of 3D spheroid growth whilst minimizing user input and significantly improving the efficiency and reproducibility of data analysis. Our bespoke imaging software is available from https://github.com/GliomaGenomics. SpheroidAnalyseR is available at https://spheroidanalyser.leeds.ac.uk, and the source code found at https://github.com/GliomaGenomics.
    Keywords:  R Shiny; confocal; organoids; spheroids
    DOI:  https://doi.org/10.14440/jbm.2022.388
  15. EMBO J. 2023 Mar 29. e111806
      Spatially organized reaction dynamics between proto-oncogenic epidermal growth factor receptor (EGFR) and protein tyrosine phosphatases determine EGFR phosphorylation dynamics in response to growth factors and thereby cellular behavior within developing tissues. We show that the reaction dynamics of mutual inhibition between RPTPγ phosphatase and autocatalytic ligandless EGFR phosphorylation enable highly sensitive promigratory EGFR signaling responses to subnanomolar EGF levels, when < 5% receptors are occupied by EGF. EGF thereby triggers an autocatalytic phospho-EGFR reaction by the initial production of small amounts of phospho-EGFR through transient, asymmetric EGF-EGFR2 dimers. Single cell RPTPγ oxidation imaging revealed that phospho-EGFR induces activation of NADPH oxidase, which in turn inhibits RPTPγ-mediated dephosphorylation of EGFR, tilting the autocatalytic RPTPγ/EGFR toggle switch reaction towards ligandless phosphorylated EGFR. Reversibility of this reaction to EGF is maintained by the constitutive phosphatase activity of endoplasmic reticulum-associated TCPTP. This RPTPγ/EGFR reaction at the plasma membrane causes promigratory signaling that is separated from proliferative signaling induced by accumulated, liganded, phosphorylated EGF-EGFR in endosomes. Accordingly, loss of RPTPγ results in constitutive promigratory signaling from phosphorylated EGFR monomers. RPTPγ is thus a suppressor of promigratory oncogenic but not of proliferative EGFR signaling.
    Keywords:  EGFR-PTP interaction; PTP oxidation; oncogenic signaling network; reactive oxygen species; toggle-switch dynamics
    DOI:  https://doi.org/10.15252/embj.2022111806
  16. Nat Commun. 2023 Mar 28. 14(1): 1726
      Mis-sense mutations affecting TP53 promote carcinogenesis both by inactivating tumor suppression, and by conferring pro-carcinogenic activities. We report here that p53 DNA-binding domain (DBD) and transactivation domain (TAD) mis-sense mutants unexpectedly activate pro-carcinogenic epidermal growth factor receptor (EGFR) signaling via distinct, previously unrecognized molecular mechanisms. DBD- and TAD-specific TP53 mutants exhibited different cellular localization and induced distinct gene expression profiles. In multiple tissues, EGFR is stabilized by TAD and DBD mutants in the cytosolic and nuclear compartments respectively. TAD mutants promote EGFR-mediated signaling by enhancing EGFR interaction with AKT via DDX31 in the cytosol. Conversely, DBD mutants maintain EGFR activity in the nucleus, by blocking EGFR interaction with the phosphatase SHP1, triggering c-Myc and Cyclin D1 upregulation. Our findings suggest that p53 mutants carrying gain-of-function, mis-sense mutations affecting two different domains form new protein complexes that promote carcinogenesis by enhancing EGFR signaling via distinctive mechanisms, exposing clinically relevant therapeutic vulnerabilities.
    DOI:  https://doi.org/10.1038/s41467-023-37223-3
  17. Adv Exp Med Biol. 2023 ;1422 3-59
      Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is the most abundant membrane phosphoinositide and cholesterol is an essential component of the plasma membrane (PM). Both lipids play key roles in a variety of cellular functions including as signaling molecules and major regulators of protein function. This chapter provides an overview of these two important lipids. Starting from a brief description of their structure, synthesis, and regulation, the chapter continues to describe the primary functions and signaling processes in which PI(4,5)P2 and cholesterol are involved. While PI(4,5)P2 and cholesterol can act independently, they often act in concert or affect each other's impact. The chapters in this volume on "Cholesterol and PI(4,5)P2 in Vital Biological Functions: From Coexistence to Crosstalk" focus on the emerging relationship between cholesterol and PI(4,5)P2 in a variety of biological systems and processes. In this chapter, the next section provides examples from the ion channel field demonstrating that PI(4,5)P2 and cholesterol can act via common mechanisms. The chapter ends with a discussion of future directions.
    Keywords:  Cellular signaling; Cholesterol; Lipid homeostasis; Lipid modulation of protein function; Lipid regulation; Phosphatidylinositol 4,5-bisphosphate
    DOI:  https://doi.org/10.1007/978-3-031-21547-6_1
  18. bioRxiv. 2023 Mar 25. pii: 2023.03.24.534152. [Epub ahead of print]
      Cancer cells exhibit dramatic differences in gene expression at the single-cell level which can predict whether they become resistant to treatment. Treatment perpetuates this heterogeneity, resulting in a diversity of cell states among resistant clones. However, it remains unclear whether these differences lead to distinct responses when another treatment is applied or the same treatment is continued. In this study, we combined single-cell RNA-sequencing with barcoding to track resistant clones through prolonged and sequential treatments. We found that cells within the same clone have similar gene expression states after multiple rounds of treatment. Moreover, we demonstrated that individual clones have distinct and differing fates, including growth, survival, or death, when subjected to a second treatment or when the first treatment is continued. By identifying gene expression states that predict clone survival, this work provides a foundation for selecting optimal therapies that target the most aggressive resistant clones within a tumor.
    DOI:  https://doi.org/10.1101/2023.03.24.534152
  19. Brain. 2023 Mar 30. pii: awad104. [Epub ahead of print]
      Cerebral cavernous malformations (CCMs) and spinal cord cavernous malformations (SCCMs) are common vascular abnormalities of the central nervous system that can lead to seizure, hemorrhage, and other neurological deficits. Approximately 85% of patients present with sporadic (versus congenital) CCMs. Somatic mutations in MAP3K3 and PIK3CA were recently reported in patients with sporadic CCM, yet it remains unknown whether MAP3K3 mutation is sufficient to induce CCMs. Here we analyzed whole-exome sequencing data for patients with CCM and found that ∼40% of them have a single, specific MAP3K3 mutation (c.1323C>G [p.Ile441Met]) but not any other known mutations in CCM-related genes. We developed a mouse model of CCM with MAP3K3I441M uniquely expressed in the endothelium of the central nervous system. We detected pathological phenotypes similar to those found in patients with MAP3K3I441M. The combination of in vivo imaging and genetic labeling revealed that CCMs were initiated with endothelial expansion followed by disruption of the blood-brain barrier. Experiments with our MAP3K3I441M mouse model demonstrated that CCM can be alleviated by treatment with rapamycin, the mTOR inhibitor. CCM pathogenesis has usually been attributed to acquisition of two or three distinct genetic mutations involving the genes CCM1/2/3 and/or PIK3CA. However, our results demonstrate that a single genetic hit is sufficient to cause CCMs.
    Keywords:   MAP3K3 ; cavernous malformations; cerebral; somatic mutation; spinal cord
    DOI:  https://doi.org/10.1093/brain/awad104
  20. Front Endocrinol (Lausanne). 2023 ;14 1128622
      The signaling pathways downstream of the insulin receptor (InsR) are some of the most evolutionarily conserved pathways that regulate organism longevity and metabolism. InsR signaling is well characterized in metabolic tissues, such as liver, muscle, and fat, actively orchestrating cellular processes, including growth, survival, and nutrient metabolism. However, cells of the immune system also express the InsR and downstream signaling machinery, and there is increasing appreciation for the involvement of InsR signaling in shaping the immune response. Here, we summarize current understanding of InsR signaling pathways in different immune cell subsets and their impact on cellular metabolism, differentiation, and effector versus regulatory function. We also discuss mechanistic links between altered InsR signaling and immune dysfunction in various disease settings and conditions, with a focus on age related conditions, such as type 2 diabetes, cancer and infection vulnerability.
    Keywords:  aging; cancer; immunometabolism; infection; inflammation; insulin resistance; obesity; pre-eclampsia
    DOI:  https://doi.org/10.3389/fendo.2023.1128622
  21. Nat Biotechnol. 2023 Mar 29.
      Conventional genome engineering with CRISPR-Cas9 creates double-strand breaks (DSBs) that lead to undesirable byproducts and reduce product purity. Here we report an approach for programmable integration of large DNA sequences in human cells that avoids the generation of DSBs by using Type I-F CRISPR-associated transposases (CASTs). We optimized DNA targeting by the QCascade complex through protein design and developed potent transcriptional activators by exploiting the multi-valent recruitment of the AAA+ ATPase TnsC to genomic sites targeted by QCascade. After initial detection of plasmid-based integration, we screened 15 additional CAST systems from a wide range of bacterial hosts, identified a homolog from Pseudoalteromonas that exhibits improved activity and further increased integration efficiencies. Finally, we discovered that bacterial ClpX enhances genomic integration by multiple orders of magnitude, likely by promoting active disassembly of the post-integration CAST complex, akin to its known role in Mu transposition. Our work highlights the ability to reconstitute complex, multi-component machineries in human cells and establishes a strong foundation to exploit CRISPR-associated transposases for eukaryotic genome engineering.
    DOI:  https://doi.org/10.1038/s41587-023-01748-1
  22. Methods Mol Biol. 2023 ;2631 155-182
      Genome editing using the CRISPR-Cas9 platform creates precise modifications in cells and whole organisms. Although knockout (KO) mutations can occur at high frequencies, determining the editing rates in a pool of cells or selecting clones that contain only KO alleles can be a challenge. User-defined knock-in (KI) modifications are achieved at much lower rates, making the identification of correctly modified clones even more challenging. The high-throughput format of targeted next-generation sequencing (NGS) provides a platform allowing sequence information to be gathered from a one to thousands of samples. However, it also poses a challenge in terms of analyzing the large amount of data that is generated. In this chapter, we present and discuss CRIS.py, a simple and highly versatile Python-based program for analyzing NGS data for genome-editing outcomes. CRIS.py can be used to analyze sequencing results for any kind of modification or multiplex modifications specified by the user. Moreover, CRIS.py runs on all fastq files found in a directory, thereby concurrently analyzing all uniquely indexed samples. CRIS.py results are consolidated into two summary files, which allows users to sort and filter results and quickly identify the clones (or animals) of greatest interest.
    Keywords:  CRIS.py; CRISPR-Cas9; Gene modifications; Genome; Genome editing; Genome engineering; Knock-in; Knockout; Next-generation sequencing; Python
    DOI:  https://doi.org/10.1007/978-1-0716-2990-1_6
  23. Clin Cancer Res. 2023 Mar 31. pii: CCR-22-3313. [Epub ahead of print]
       PURPOSE: Eganelisib (IPI-549) is a first-in-class, orally administered, highly selective phosphoinositide-3-kinase (PI3K)-γ inhibitor with anti-tumor activity alone and in combination with programmed cell death protein 1/ligand 1 (PD-1/PD-L1) inhibitors in preclinical studies. This phase 1/1b first-in-human, MAcrophage Reprogramming in Immuno-Oncology-1 (MARIO-1; NCT02637531) study evaluated the safety and tolerability of once-daily eganelisib as monotherapy and in combination with nivolumab in patients with solid tumors.
    PATIENTS AND METHODS: Dose-escalation cohorts received eganelisib 10-60 mg as monotherapy (n=39) and 20-40 mg when combined with nivolumab (n=180). Primary endpoints included incidence of dose-limiting toxicities (DLTs) and adverse events (AEs).
    RESULTS: The most common treatment-related grade ≥3 toxicities with monotherapy were increased alanine aminotransferase (ALT; 18%), aspartate aminotransferase (AST; 18%), and alkaline phosphatase (5%). No DLTs occurred in the first 28 days; however, toxicities meeting DLT criteria (mostly grade 3 reversible hepatic enzyme elevations) occurred with eganelisib 60 mg in later treatment cycles. In combination, the most common treatment-related grade ≥3 toxicities were increased AST (13%) and increased ALT and rash (10%). Treatment-related serious adverse events occurred in 5% of monotherapy patients (grade 4 bilirubin and hepatic enzyme increases in one patient each) and 13% in combination (pyrexia, rash, cytokine release syndrome, and infusion-related reaction in ≥2 patients each). Anti-tumor activity was observed in combination, including patients who had progressed on PD-1/PD-L1 inhibitors.
    CONCLUSIONS: Based on the observed safety profile, eganelisib doses of 30 mg and 40 mg once daily in combination with PD-1/PD-L1 inhibitors were chosen for phase 2 study.
    DOI:  https://doi.org/10.1158/1078-0432.CCR-22-3313
  24. Nat Commun. 2023 Mar 27. 14(1): 1679
      Bioimages frequently exhibit low signal-to-noise ratios due to experimental conditions, specimen characteristics, and imaging trade-offs. Reliable segmentation of such ambiguous images is difficult and laborious. Here we introduce deepflash2, a deep learning-enabled segmentation tool for bioimage analysis. The tool addresses typical challenges that may arise during the training, evaluation, and application of deep learning models on ambiguous data. The tool's training and evaluation pipeline uses multiple expert annotations and deep model ensembles to achieve accurate results. The application pipeline supports various use-cases for expert annotations and includes a quality assurance mechanism in the form of uncertainty measures. Benchmarked against other tools, deepflash2 offers both high predictive accuracy and efficient computational resource usage. The tool is built upon established deep learning libraries and enables sharing of trained model ensembles with the research community. deepflash2 aims to simplify the integration of deep learning into bioimage analysis projects while improving accuracy and reliability.
    DOI:  https://doi.org/10.1038/s41467-023-36960-9
  25. Nat Biotechnol. 2023 Mar 27.
      Metacells are cell groupings derived from single-cell sequencing data that represent highly granular, distinct cell states. Here we present single-cell aggregation of cell states (SEACells), an algorithm for identifying metacells that overcome the sparsity of single-cell data while retaining heterogeneity obscured by traditional cell clustering. SEACells outperforms existing algorithms in identifying comprehensive, compact and well-separated metacells in both RNA and assay for transposase-accessible chromatin (ATAC) modalities across datasets with discrete cell types and continuous trajectories. We demonstrate the use of SEACells to improve gene-peak associations, compute ATAC gene scores and infer the activities of critical regulators during differentiation. Metacell-level analysis scales to large datasets and is particularly well suited for patient cohorts, where per-patient aggregation provides more robust units for data integration. We use our metacells to reveal expression dynamics and gradual reconfiguration of the chromatin landscape during hematopoietic differentiation and to uniquely identify CD4 T cell differentiation and activation states associated with disease onset and severity in a Coronavirus Disease 2019 (COVID-19) patient cohort.
    DOI:  https://doi.org/10.1038/s41587-023-01716-9
  26. Nat Chem. 2023 Mar 30.
      Non-destructive fluorophore diffusion across cell membranes to provide an unbiased fluorescence intensity readout is critical for quantitative imaging applications in live cells and tissues. Commercially available small-molecule fluorophores have been engineered for biological compatibility, imparting high water solubility by modifying rhodamine and cyanine dye scaffolds with multiple sulfonate groups. The resulting net negative charge, however, often renders these fluorophores cell-membrane-impermeant. Here we report the design and development of our biologically compatible, water-soluble and cell-membrane-permeable fluorophores, termed OregonFluor (ORFluor). By adapting previously established ratiometric imaging methodology using bio-affinity agents, it is now possible to use small-molecule ORFluor-labelled therapeutic inhibitors to quantitatively visualize their intracellular distribution and protein target-specific binding, providing a chemical toolkit for quantifying drug target availability in live cells and tissues.
    DOI:  https://doi.org/10.1038/s41557-023-01173-6
  27. Methods Cell Biol. 2023 ;pii: S0091-679X(22)00109-1. [Epub ahead of print]175 17-31
      Primary cilia provide a specialized subcellular environment favoring ordered and timely interaction and modification of signaling molecules, necessary for the sensing and transduction of extracellular signals and environmental conditions. Crucial to the understanding of ciliary function is the knowledge of the signaling molecules composing the ciliary compartment. While proteomes of primary cilia have been published recently, the selective isolation of primary cilia from specific cell types and whole tissue still proves difficult, and many laboratories instead resort to the analysis of cultured cells, which may introduce experimental artifacts. Here we present a flow cytometry-based method to isolate and characterize primary cilia from the murine ventricular-subventricular zone. After deciliation, primary cilia are immunolabeled with antibodies against ciliary markers. As an example, we here use a double-staining with acetylated tubulin, which stains the ciliary axoneme, and ciliary membrane protein ADP-ribosylation-like factor 13b (Arl13b); additionally, we triple-labeled primary cilia using the ciliary marker adenylate cyclase 3 (AC3). Besides analysis at the single particle level, fluorescence activated cell sorting (FACS) allows collection of pure preparations of primary cilia suited for subsequent proteomic analyses like mass spectrometry or western blot. As an example of analytical application, we performed triple immunostaining and FACS analysis to reveal cilia heterogeneity. Thus, our cilia isolation method, which can readily be applied to other tissues or cell culture, will facilitate the study of this key cellular organelle and shed light on its role in normal conditions and disease.
    Keywords:  AC3; Acetylated tubulin; Arl13b; Flow cytometry; Mammalian brain; Neural stem cells; Primary cilia; Ventricular-subventricular zone
    DOI:  https://doi.org/10.1016/bs.mcb.2022.07.018