bims-pideca Biomed News
on Class IA PI3K signalling in development and cancer
Issue of 2022–09–25
thirty papers selected by
Ralitsa Radostinova Madsen, University College London



  1. Biomolecules. 2022 Aug 25. pii: 1181. [Epub ahead of print]12(9):
      The signaling inputs that function to integrate biochemical and mechanical cues from the extracellular environment to alter the wound-repair outcome to a fibrotic response remain poorly understood. Here, using a clinically relevant post-cataract surgery wound healing/fibrosis model, we investigated the role of Phosphoinositide-3-kinase (PI3K) class I isoforms as potential signaling integrators to promote the proliferation, emergence and persistence of collagen I-producing alpha smooth muscle actin (αSMA+) myofibroblasts that cause organ fibrosis. Using PI3K isoform specific small molecule inhibitors, our studies revealed a requisite role for PI3K p110α in signaling the CD44+ mesenchymal leader cell population that we previously identified as resident immune cells to produce and organize a fibronectin-EDA rich provisional matrix and transition to collagen I-producing αSMA+ myofibroblasts. While the PI3K effector Akt was alone insufficient to regulate myofibroblast differentiation, our studies revealed a role for Rac, another potential PI3K effector, in this process. Our studies further uncovered a critical role for PI3K p110α in signaling the proliferation of CD44+ leader cells, which is important to the emergence and expansion of myofibroblasts. Thus, these studies identify activation of PI3K p110α as a critical signaling input following wounding to the development and progression of fibrotic disease.
    Keywords:  PI3K; PI3Kp110α; fibrosis; lens; myofibroblast; proliferation
    DOI:  https://doi.org/10.3390/biom12091181
  2. BMC Cancer. 2022 Sep 21. 22(1): 1002
       BACKGROUND: Approximately 40% of hormone receptor positive/human epidermal receptor 2 negative (HR + /HER2-) metastatic breast cancer (mBC) patients harbor phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) mutations. However, associations between PIK3CA mutation status and clinical outcomes among patients with HR + /HER2- mBC have been heterogeneous across clinical trials. This meta-analysis was conducted to survey recently available trial data to assess the prognostic effects of PIK3CA among patients with HR + /HER2- mBC.  METHODS: Randomized clinical trials reporting progression-free survival (PFS) or overall survival (OS) stratified by PIK3CA status in HR + /HER2- mBC were identified via systematic literature review. Trial arms receiving phosphatidylinositol 3-kinase (PI3K)-targeted therapies were excluded. Meta-regression analysis was used to estimate the association between PIK3CA status and PFS and OS among included studies.
    RESULTS: The analyzed data included 3,219 patients from 33 study arms across 11 trials (PIK3CA mutated: 1,386, wild type: 1,833). PIK3CA mutation was associated with shorter median PFS (difference [95% CI] (months): -1.8 [-3.4, -0.1], I2 = 35%) and shorter median OS (-8.4 [-13.4, -3.5], I2 = 58%, N = 1,545). Findings were similar for PFS rates at 6 months (odds ratio [95% CI]: 0.74 [0.59, 0.94], I2 = 42%, N = 3,160) and 12 months (0.76 [0.59, 0.99], I2 = 42%, N = 2,468) and directionally consistent but not statistically significant at 18 months (N = 1,726).
    CONCLUSIONS: Pooling evidence across multiple studies, PIK3CA mutation was associated with shorter PFS and OS. These findings suggest a negative prognostic value of PIK3CA mutations in patients with HR + /HER2- mBC.
    Keywords:  Hormone receptor positive/human epidermal receptor 2 negative (HR + /HER2-); Metastatic breast cancer (mBC); Overall survival; PIK3CA; Progression-free survival
    DOI:  https://doi.org/10.1186/s12885-022-10078-5
  3. Vet Sci. 2022 Sep 13. pii: 501. [Epub ahead of print]9(9):
      Fetal growth is reliant on placental formation and function, which, in turn, requires the energy produced by the mitochondria. Prior work has shown that both mother and fetus operate via the phosphoinositol 3-kinase (PI3K)-p110α signalling pathway to modify placental development, function, and fetal growth outcomes. This study in mice used genetic inactivation of PI3K-p110α (α/+) in mothers and fetuses and high resolution respirometry to investigate the influence of maternal and fetal PI3K-p110α deficiency on fetal and placental growth, in relation to placental mitochondrial bioenergetics, for each fetal sex. The effect of PI3K-p110α deficiency on maternal body composition was also determined to understand more about the maternal-driven changes in feto-placental development. These data show that male fetuses were more sensitive than females to fetal PI3K-p110α deficiency, as they had greater reductions in fetal and placental weight, when compared to their WT littermates. Placental weight was also altered in males only of α/+ dams. In addition, α/+ male, but not female, fetuses showed an increase in mitochondrial reserve capacity, when compared to their WT littermates in α/+ dams. Finally, α/+ dams exhibited reduced adipose depot masses, compared to wild-type dams. These findings, thus, demonstrate that maternal nutrient reserves and ability to apportion nutrients to the fetus are reduced in α/+ dams. Moreover, maternal and fetal PI3K-p110α deficiency impacts conceptus growth and placental mitochondrial bioenergetic function, in a manner dependent on fetal sex.
    Keywords:  fetal PI3K-p110α; fetus; maternal PI3K-p110α; mitochondria; placenta; sex; signaling
    DOI:  https://doi.org/10.3390/vetsci9090501
  4. Sci Rep. 2022 Sep 20. 12(1): 15715
      The serine/threonine protein kinase AKT plays a pivotal role within the PI3K pathway in regulating cellular proliferation and apoptotic cellular functions, and AKT hyper-activation via gene amplification and/or mutation has been implicated in multiple human malignancies. There are 3 AKT isoenzymes (AKT1-3) which mediate critical, non-redundant functions. We present the discovery and development of ALM301, a novel, allosteric, sub-type selective inhibitor of AKT1/2. ALM301 binds in an allosteric pocket created by the combined movement of the PH domain and the catalytic domain, resulting in a DFG out conformation. ALM301 was shown to be highly selective against a panel of over 450 kinases and potently inhibited cellular proliferation. These effects were particularly pronounced in MCF-7 cells containing a PI3KCA mutation. Subsequent cellular downstream pathway analysis in this sensitive cell line revealed potent inhibition of pAKT signalling up to 48 h post dosing. ALM301 treatment was well tolerated in an MCF-7 xenograft model and led to a dose-dependent reduction in tumour growth. Enhanced efficacy was observed in combination with tamoxifen. In summary, ALM301 is a highly specific AKT 1/2 inhibitor with an excellent pharmacological profile suitable for further clinical development.
    DOI:  https://doi.org/10.1038/s41598-022-20208-5
  5. Front Cell Dev Biol. 2022 ;10 980721
      Increasing cell size drives changes to the proteome, which affects cell physiology. As cell size increases, some proteins become more concentrated while others are diluted. As a result, the state of the cell changes continuously with increasing size. In addition to these proteomic changes, large cells have a lower growth rate (protein synthesis rate per unit volume). That both the cell's proteome and growth rate change with cell size suggests they may be interdependent. To test this, we used quantitative mass spectrometry to measure how the proteome changes in response to the mTOR inhibitor rapamycin, which decreases the cellular growth rate and has only a minimal effect on cell size. We found that large cell size and mTOR inhibition, both of which lower the growth rate of a cell, remodel the proteome in similar ways. This suggests that many of the effects of cell size are mediated by the size-dependent slowdown of the cellular growth rate. For example, the previously reported size-dependent expression of some senescence markers could reflect a cell's declining growth rate rather than its size per se. In contrast, histones and other chromatin components are diluted in large cells independently of the growth rate, likely so that they remain in proportion with the genome. Finally, size-dependent changes to the cell's growth rate and proteome composition are still apparent in cells continually exposed to a saturating dose of rapamycin, which indicates that cell size can affect the proteome independently of mTORC1 signaling. Taken together, our results clarify the dependencies between cell size, growth, mTOR activity, and the proteome remodeling that ultimately controls many aspects of cell physiology.
    Keywords:  cell size; growth rate; mTOR; protein synthesis rate; quantitative proteomics; rapamycin; senescence
    DOI:  https://doi.org/10.3389/fcell.2022.980721
  6. Nat Commun. 2022 Sep 23. 13(1): 5594
      Insulin receptor (IR) signaling defects cause a variety of metabolic diseases including diabetes. Moreover, inherited mutations of the IR cause severe insulin resistance, leading to early morbidity and mortality with limited therapeutic options. A previously reported selective IR agonist without sequence homology to insulin, S597, activates IR and mimics insulin's action on glycemic control. To elucidate the mechanism of IR activation by S597, we determine cryo-EM structures of the mouse IR/S597 complex. Unlike the compact T-shaped active IR resulting from the binding of four insulins to two distinct sites, two S597 molecules induce and stabilize an extended T-shaped IR through the simultaneous binding to both the L1 domain of one protomer and the FnIII-1 domain of another. Importantly, S597 fully activates IR mutants that disrupt insulin binding or destabilize the insulin-induced compact T-shape, thus eliciting insulin-like signaling. S597 also selectively activates IR signaling among different tissues and triggers IR endocytosis in the liver. Overall, our structural and functional studies guide future efforts to develop insulin mimetics targeting insulin resistance caused by defects in insulin binding and stabilization of insulin-activated state of IR, demonstrating the potential of structure-based drug design for insulin-resistant diseases.
    DOI:  https://doi.org/10.1038/s41467-022-33274-0
  7. Glia. 2022 Sep 21.
      Unlike mammals, zebrafish possess a remarkable ability to regenerate damaged retina after an acute injury. Retina regeneration in zebrafish involves the induction of Müller glia-derived progenitor cells (MGPCs) exhibiting stem cell-like characteristics, which are capable of restoring all retinal cell-types. The induction of MGPC through Müller glia-reprograming involves several cellular, genetic and biochemical events soon after a retinal injury. Despite the knowledge on the importance of Phosphatase and tensin homolog (Pten), which is a dual-specificity phosphatase and tumor suppressor in the maintaining of cellular homeostasis, its importance during retina regeneration remains unknown. Here, we explored the importance of Pten during zebrafish retina regeneration. The Pten gets downregulated upon retinal injury and is absent from the MGPCs, which is essential to trigger Akt-mediated cellular proliferation essential for retina regeneration. We found that the downregulation of Pten in the post-injury retina accelerates MGPCs formation, while its overexpression restricts the regenerative response. We observed that Pten regulates the proliferation of MGPCs not only through Akt pathway but also by Mmp9/Notch signaling. Mmp9-activity is essential to induce the proliferation of MGPCs in the absence of Pten. Lastly, we show that expression of Pten is fine-tuned through Mycb/histone deacetylase1 and Tgf-β signaling. The present study emphasizes on the stringent regulation of Pten and its crucial involvement during the zebrafish retina regeneration.
    Keywords:  Akt; Fos; Mmp9; Müller glia; Notch; PI3K; Pten; Tgf-β; mTORC2; regeneration; retina; zebrafish
    DOI:  https://doi.org/10.1002/glia.24270
  8. Am J Dermatopathol. 2022 Oct 01. 44(10): 705-717
       ABSTRACT: PTEN hamartoma tumor syndrome (PTHS) includes diseases with germline pathogenic variants in the PTEN gene. Cowden syndrome is included in this syndrome . PTEN (phosphatase and tensin homolog) is a tumor suppressor gene located on chromosome 10q22-23; nearly 60%-90% of pathogenic variants are inherited. Cowden syndrome is a rare autosomic dominant condition, affecting approximately 1/200,000 people worldwide. Patients present benign and, malignant neoplasms in multiple organs, mostly breast and thyroid. The skin is the organ affected most consistently by Cowden disease. It is an autosomal dominant condition, characterized clinically by the presence of innumerable verrucous lesions on the skin. Interpretations of histopathologic findings in the cutaneous and mucosal lesions continue to be a matter of debate.
    DOI:  https://doi.org/10.1097/DAD.0000000000002234
  9. Cells. 2022 Sep 13. pii: 2847. [Epub ahead of print]11(18):
      In the basal, proliferative layer of healthy skin, the mTOR complex 1 (mTORC1) is activated, thus regulating proliferation while preventing differentiation. When cells leave the proliferative, basal compartment, mTORC1 signaling is turned off, which allows differentiation. Under inflammatory conditions, this switch is hijacked by cytokines and prevents proper differentiation. It is currently unknown how mTORC1 is regulated to mediate these effects on keratinocyte differentiation. In other tissues, mTORC1 activity is controlled through various pathways via the tuberous sclerosis complex (TSC). Thus, we investigated whether the TS complex is regulated by proinflammatory cytokines and contributes to the pathogenesis of psoriasis. TNF-α as well as IL-1β induced the phosphorylation of TSC2, especially on S939 via the PI3-K/AKT and MAPK pathway. Surprisingly, increased TSC2 phosphorylation could not be detected in psoriasis patients. Instead, TSC2 was strongly downregulated in lesional psoriatic skin compared to non-lesional skin of the same patients or healthy skin. In vitro inflammatory cytokines induced dissociation of TSC2 from the lysosome, followed by destabilization of the TS complex and degradation. Thus, we assume that in psoriasis, inflammatory cytokines induce strong TSC2 phosphorylation, which in turn leads to its degradation. Consequently, chronic mTORC1 activity impairs ordered keratinocyte differentiation and contributes to the phenotypical changes seen in the psoriatic epidermis.
    Keywords:  cytokines; inflammation; mTORC1; psoriasis; tuberous sclerosis complex
    DOI:  https://doi.org/10.3390/cells11182847
  10. Nat Commun. 2022 Sep 17. 13(1): 5469
      Oncogenic RAS mutations are common in multiple myeloma (MM), an incurable malignancy of plasma cells. However, the mechanisms of pathogenic RAS signaling in this disease remain enigmatic and difficult to inhibit therapeutically. We employ an unbiased proteogenomic approach to dissect RAS signaling in MM. We discover that mutant isoforms of RAS organize a signaling complex with the amino acid transporter, SLC3A2, and MTOR on endolysosomes, which directly activates mTORC1 by co-opting amino acid sensing pathways. MM tumors with high expression of mTORC1-dependent genes are more aggressive and enriched in RAS mutations, and we detect interactions between RAS and MTOR in MM patient tumors harboring mutant RAS isoforms. Inhibition of RAS-dependent mTORC1 activity synergizes with MEK and ERK inhibitors to quench pathogenic RAS signaling in MM cells. This study redefines the RAS pathway in MM and provides a mechanistic and rational basis to target this mode of RAS signaling.
    DOI:  https://doi.org/10.1038/s41467-022-33142-x
  11. Cancers (Basel). 2022 Sep 13. pii: 4448. [Epub ahead of print]14(18):
      Recurrent or high-grade meningiomas are an unmet medical need. Recently, we demonstrated that targeting mTOR by everolimus was relevant both in vitro and in humans. However, everolimus induces an AKT activation that may impact the anti-proliferative effect of the drug. Moreover, the MAP kinase pathway was shown to be involved in meningioma tumorigenesis. We therefore targeted both the Pi3k-AKT-mTOR and MAP kinase pathways by using combinations of the Pi3k inhibitor alpelisib and the MEK inhibitor trametinib. Our study was performed in vitro on the human meningioma cell lines and on a large series of primary cultures providing from 63 freshly operated meningiomas including 35 WHO grade 1, 23 grade 2, and five grade 3, half of which presented a NF2 genomic alteration. Alpelisib induced a higher inhibitory effect on cell viability and proliferation than everolimus in all cell lines and 32 randomly selected tumors no matter the genomic status, the histological subtype or grade. Trametinib also strongly inhibited cell proliferation and induced AKT activation. Combined treatment with alpelisib plus trametinib reversed the AKT activation induced by trametinib and induced an additive inhibitory effect irrespective of the cell lines or tumor features. Co-targeting pathways seems promising and may be considered particularly for aggressive meningioma.
    Keywords:  MAPkinase; NF2; Pi3kinase; alpelisib; everolimus; meningioma; targeted therapy; trametinib
    DOI:  https://doi.org/10.3390/cancers14184448
  12. Mol Cell Biol. 2022 Sep 20. e0016322
      Insulin and insulin-like growth factor 1 (IGF1) signaling is transduced by insulin receptor substrate 1 (IRS1) and IRS2. To elucidate physiological and redundant roles of insulin and IGF1 signaling in adult hearts, we generated mice with inducible cardiomyocyte-specific deletion of insulin and IGF1 receptors or IRS1 and IRS2. Both models developed dilated cardiomyopathy, and most mice died by 8 weeks post-gene deletion. Heart failure was characterized by cardiomyocyte loss and disarray, increased proapoptotic signaling, and increased autophagy. Suppression of autophagy by activating mTOR signaling did not prevent heart failure. Transcriptional profiling revealed reduced serum response factor (SRF) transcriptional activity and decreased mRNA levels of genes encoding sarcomere and gap junction proteins as early as 3 days post-gene deletion, in concert with ultrastructural evidence of sarcomere disruption and intercalated discs within 1 week after gene deletion. These data confirm conserved roles for constitutive insulin and IGF1 signaling in suppressing autophagic and apoptotic signaling in the adult heart. The present study also identifies an unexpected role for insulin and IGF1 signaling in regulating an SRF-mediated transcriptional program, which maintains expression of genes encoding proteins that support sarcomere integrity in the adult heart, reduction of which results in rapid development of heart failure.
    Keywords:  cardiac remodeling; cardiac structure; heart failure; insulin signaling
    DOI:  https://doi.org/10.1128/mcb.00163-22
  13. Cells. 2022 Sep 14. pii: 2859. [Epub ahead of print]11(18):
      In pediatric rhabdomyosarcoma (RMS), elevated Akt signaling is associated with increased malignancy. Here, we report that expression of a constitutively active, myristoylated form of Akt1 (myrAkt1) in human RMS RD cells led to hyperactivation of the mammalian target of rapamycin (mTOR)/70-kDa ribosomal protein S6 kinase (p70S6K) pathway, resulting in the loss of both MyoD and myogenic capacity, and an increase of Ki67 expression due to high cell mitosis. MyrAkt1 signaling increased migratory and invasive cell traits, as detected by wound healing, zymography, and xenograft zebrafish assays, and promoted repair of DNA damage after radiotherapy and doxorubicin treatments, as revealed by nuclear detection of phosphorylated H2A histone family member X (γH2AX) through activation of DNA-dependent protein kinase (DNA-PK). Treatment with synthetic inhibitors of phosphatidylinositol-3-kinase (PI3K) and Akt was sufficient to completely revert the aggressive cell phenotype, while the mTOR inhibitor rapamycin failed to block cell dissemination. Furthermore, we found that pronounced Akt1 signaling increased the susceptibility to cell apoptosis after treatments with 2-deoxy-D-glucose (2-DG) and lovastatin, enzymatic inhibitors of hexokinase, and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), especially in combination with radiotherapy and doxorubicin. In conclusion, these data suggest that restriction of glucose metabolism and the mevalonate pathway, in combination with standard therapy, may increase therapy success in RMS tumors characterized by a dysregulated Akt signaling.
    Keywords:  2-deoxy-D-glucose; Akt; DNA repair; lovastatin; rhabdomyosarcoma
    DOI:  https://doi.org/10.3390/cells11182859
  14. Cells. 2022 Sep 14. pii: 2862. [Epub ahead of print]11(18):
      The control of exosome release is associated with numerous physiological and pathological activities, and that release is often indicative of health, disease, and environmental nutrient stress. Tuberous sclerosis complex (TSC) regulates the cell viability via the negative regulation of the mammalian target of rapamycin complex (mTORC1) during glucose deprivation. However, the mechanism by which viability of TSC-null cells is regulated by mTORC1 inhibition under glucose deprivation remains unclear. Here, we demonstrated that exosome release regulates cell death induced by glucose deprivation in TSC-null cells. The mTORC1 inhibition by rapamycin significantly increased the exosome biogenesis, exosome secretion, and cell viability in TSC-null cells. In addition, the increase in cell viability by mTORC1 inhibition was attenuated by two different types of inhibitors of exosome release under glucose deprivation. Taken together, we suggest that exosome release inhibition might be a novel way for regression of cell growth in TSC-null cells showing lack of cell death by mTORC1 inhibition.
    Keywords:  TSC; cell viability; exosome; glucose deprivation; mTORC1
    DOI:  https://doi.org/10.3390/cells11182862
  15. Sci Rep. 2022 Sep 17. 12(1): 15628
      Previously, our group has demonstrated establishment of Cancer Stem Cell (CSC) models from stem cells in the presence of conditioned medium of cancer cell lines. In this study, we tried to identify the factors responsible for the induction of CSCs. Since we found the lipid composition could be traced to arachidonic acid cascade in the CSC model, we assessed prostaglandin E2 (PGE2) as a candidate for the ability to induce CSCs from induced pluripotent stem cells (iPSCs). Mouse iPSCs acquired the characteristics of CSCs in the presence of 10 ng/mL of PGE2 after 4 weeks. Since constitutive Akt activation and pik3cg overexpression were found in the resultant CSCs, of which growth was found independent of PGE2, chronic stimulation of the receptors EP-2/4 by PGE2 was supposed to induce CSCs from iPSCs through epigenetic effect. The bioinformatics analysis of the next generation sequence data of the obtained CSCs proposed not only receptor tyrosine kinase activation by growth factors but also extracellular matrix and focal adhesion enhanced PI3K pathway. Collectively, chronic stimulation of stem cells with PGE2 was implied responsible for cancer initiation enhancing PI3K/Akt axis.
    DOI:  https://doi.org/10.1038/s41598-022-19265-7
  16. SLAS Discov. 2022 Sep 15. pii: S2472-5552(22)13694-4. [Epub ahead of print]
      Three dimensional models of cell culture enables researchers to recreate aspects of tumour biology not replicated by traditional two dimensional techniques. Here we describe a protocol to enable automated high throughput phenotypic profiling across panels of patient derived glioma stem cell spheroid models. We demonstrate the use of both live/dead cell end-points and monitor the dynamic changes in the cell cycle using cell lines expressing the FUCCI cell cycle reporter. Together, these assays provide additional insight into the mechanism of action of compound treatments over traditional cell viability assay endpoints.
    Keywords:  3-dimensional; Glioblastoma; Spheroid; cell cycle; drug discovery
    DOI:  https://doi.org/10.1016/j.slasd.2022.09.002
  17. Curr Protoc. 2022 Sep;2(9): e538
      Effective and precise gene editing of T lymphocytes is critical for advancing the understanding of T cell biology and the development of next-generation cellular therapies. Although methods for effective CRISPR/Cas9-mediated gene knock-out in primary human T cells have been developed, complementary techniques for nonviral gene knock-in can be cumbersome and inefficient. Here, we report a simple and efficient method for nonviral CRISPR/Cas9-based gene knock-in utilizing plasmid-based donor DNA templates. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Purification of human CD4+ or CD8+ T cells from blood Basic Protocol 2: Activation of purified CD4+ or CD8+ T cells using TransAct CD3/CD28 agonist-conjugated nanomatrix Basic Protocol 3: Preparation of Cas9/sgRNA RNPs Basic Protocol 4: Transfection of CAS9-RNP and knock-in template into human T cells Support Protocol 1: Purity check following magnetic T cell isolation Support Protocol 2: Dextramer staining of TCR-edited T cells Support Protocol 3: Functional characterization of TCR knock-in T cells Support Protocol 4: Detection of knock-in reporter activity in CRISPR/CAS9-edited T cells.
    Keywords:  CRISPR; Cas9; T cell; cell therapy; gene engineering; knock-in; lymphocyte
    DOI:  https://doi.org/10.1002/cpz1.538
  18. Nat Commun. 2022 Sep 20. 13(1): 5495
      Conditional degron tags (CDTs) are a powerful tool for target validation that combines the kinetics and reversible action of pharmacological agents with the generalizability of genetic manipulation. However, successful design of a CDT fusion protein often requires a prolonged, ad hoc cycle of construct design, failure, and re-design. To address this limitation, we report here a system to rapidly compare the activity of five unique CDTs: AID/AID2, IKZF3d, dTAG, HaloTag, and SMASh. We demonstrate the utility of this system against 16 unique protein targets. We find that expression and degradation are highly dependent on the specific CDT, the construct design, and the target. None of the CDTs leads to efficient expression and/or degradation across all targets; however, our systematic approach enables the identification of at least one optimal CDT fusion for each target. To enable the adoption of CDT strategies more broadly, we have made these reagents, and a detailed protocol, available as a community resource.
    DOI:  https://doi.org/10.1038/s41467-022-33246-4
  19. Cell Death Dis. 2022 Sep 17. 13(9): 794
      PI3K/AKT signaling pathway plays an important role in regulating the tumorigenesis, recurrence, and metastasis of breast cancer (BC). In this study, we discovered a circRNA with protein-coding potential, which we named circSEMA4B. CircSEMA4B could encode a novel protein, SEMA4B-211aa. Both circSEMA4B and SEMA4B-211aa were remarkably downregulated in BC tissues and cell lines. Low expression of circSEMA4B was positively associated with TNM stage, tumor size, lymph node metastasis, and distant metastasis of BC patients. The functional investigation showed that circSEMA4B and SEMA4B-211aa could significantly inhibit the proliferation and migration of BC in vivo and in vitro. Of note, SEMA4B-211aa inhibited the generation of PIP3 by binding to p85, thereby inhibiting the phosphorylation of AKT (Thr308). CircSEMA4B inhibited the phosphorylation of AKT (Ser473) through miR-330-3p/PDCD4 axis. Taken together, circSEMA4B is a novel negative regulator of PI3K/AKT signaling pathway, providing novel mechanistic insights into the underlying mechanisms of BC.
    DOI:  https://doi.org/10.1038/s41419-022-05246-1
  20. J Am Chem Soc. 2022 Sep 19.
      The small GTPase Ras is a critical regulator of cell growth and proliferation. Its activity is frequently dysregulated in cancers, prompting decades of work to pharmacologically target Ras. Understanding Ras biology and developing effective Ras therapeutics both require probing Ras activity in its native context, yet tools to measure its activities in cellulo are limited. Here, we developed a ratiometric Ras activity reporter (RasAR) that provides quantitative measurement of Ras activity in living cells with high spatiotemporal resolution. We demonstrated that RasAR can probe live-cell activities of all the primary isoforms of Ras. Given that the functional roles of different isoforms of Ras are intimately linked to their subcellular distribution and regulation, we interrogated the spatiotemporal regulation of Ras utilizing subcellularly targeted RasAR and uncovered the role of Src kinase as an upstream regulator to inhibit HRas. Furthermore, we showed that RasAR enables capture of KRasG12C inhibition dynamics in living cells upon treatment with KRasG12C covalent inhibitors, including ARS1620, Sotorasib, and Adagrasib. We found in living cells a residual Ras activity lingers for hours in the presence of these inhibitors. Together, RasAR represents a powerful molecular tool to enable live-cell interrogation of Ras activity and facilitate the development of Ras inhibitors.
    DOI:  https://doi.org/10.1021/jacs.2c05203
  21. Curr Opin Cell Biol. 2022 Sep 18. pii: S0955-0674(22)00083-7. [Epub ahead of print]78 102130
      Mounting evidence shows that oscillatory activity is widespread in cell signaling. Here, we review some of this recent evidence, focusing on both the molecular mechanisms that potentially underlie such dynamical behavior, and the potential advantages that signaling oscillations might have in cell function. The biological processes considered include cellular differentiation and tissue maintenance, intermittent responses in pluripotent stem cells, and collective cell migration during wound healing. With the aid of mathematical modeling, we review recent examples in which delayed negative feedback has been seen to act as a unifying principle that underpins this wide variety of phenomena.
    DOI:  https://doi.org/10.1016/j.ceb.2022.102130
  22. Sci Rep. 2022 Sep 22. 12(1): 15810
      Oncogenic RAS proteins are important for driving tumour formation, and for maintenance of the transformed phenotype, and thus their relevance as a cancer therapeutic target is undeniable. We focused here on obtaining peptidomimetics, which have good pharmacological properties, to block Ras-effector interaction. Computational analysis was used to identify hot spots of RAS relevant for these interactions and to screen a library of peptidomimetics. Nine compounds were synthesized and assayed for their activity as RAS inhibitors in cultured cells. Most of them induced a reduction in ERK and AKT activation by EGF, a marker of RAS activity. The most potent inhibitor disrupted Raf and PI3K interaction with oncogenic KRAS, corroborating its mechanism of action as an inhibitor of protein-protein interactions, and thus validating our computational methodology. Most interestingly, improvement of one of the compounds allowed us to obtain a peptidomimetic that decreased the survival of pancreatic cancer cell lines harbouring oncogenic KRAS.
    DOI:  https://doi.org/10.1038/s41598-022-19703-6
  23. Curr Protoc. 2022 Sep;2(9): e539
      Kinases are responsible for phosphorylation of proteins and are involved in many biological processes, including cell signaling. Identifying the kinases that phosphorylate specific phosphoproteins is critical to augment the current understanding of cellular events. Herein, we report a general protocol to study the kinases of a target substrate phosphoprotein using kinase-catalyzed crosslinking and immunoprecipitation (K-CLIP). K-CLIP uses a photocrosslinking γ-phosphoryl-modified ATP analog, such as ATP-arylazide, to covalently crosslink substrates to kinases with UV irradiation. Crosslinked kinase-substrate complexes can then be enriched by immunoprecipitating the target substrate phosphoprotein, with bound kinase(s) identified using Western blot or mass spectrometry analysis. K-CLIP is an adaptable chemical tool to investigate and discover kinase-substrate pairs, which will promote characterization of complex phosphorylation-mediated cell biology. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Kinase-catalyzed crosslinking of lysates Basic Protocol 2: Kinase-catalyzed crosslinking and immunoprecipitation (K-CLIP).
    Keywords:  ATP-arylazide; kinase; kinase-substrate identification; photocrosslinking
    DOI:  https://doi.org/10.1002/cpz1.539
  24. Elife. 2022 Sep 21. pii: e75227. [Epub ahead of print]11
      How cells control gene expression is a fundamental question. The relative contribution of protein-level and RNA-level regulation to this process remains unclear. Here, we perform a proteogenomic analysis of tumors and untransformed cells containing somatic copy number alterations (SCNAs). By revealing how cells regulate RNA and protein abundances of genes with SCNAs, we provide insights into the rules of gene regulation. Protein complex genes have a strong protein-level regulation while non-complex genes have a strong RNA-level regulation. Notable exceptions are plasma membrane protein complex genes, which show a weak protein-level regulation and a stronger RNA-level regulation. Strikingly, we find a strong negative association between the degree of RNA-level and protein-level regulation across genes and cellular pathways. Moreover, genes participating in the same pathway show a similar degree of RNA- and protein-level regulation. Pathways including translation, splicing, RNA processing, and mitochondrial function show a stronger protein-level regulation while cell adhesion and migration pathways show a stronger RNA-level regulation. These results suggest that the evolution of gene regulation is shaped by functional constraints and that many cellular pathways tend to evolve one predominant mechanism of gene regulation at the protein level or at the RNA level.
    Keywords:  aneuploidy; cancer; cancer biology; computational biology; gene expression; human; protein regulation; proteogenomic; systems biology
    DOI:  https://doi.org/10.7554/eLife.75227
  25. J Immunol. 2022 Sep 01. 209(5): 991-1000
      Akt-1 and Akt-2 are the major isoforms of the serine/threonine Akt family that play a key role in controlling immune responses. However, the involvement of Akt-1 and Akt-2 isoforms in antifungal innate immunity is completely unknown. In this study, we show that Akt2 -/-, but not Akt1 -/-, mice are protected from lethal Candida albicans infection. Loss of Akt-2 facilitates the recruitment of neutrophils and macrophages to the spleen and increases reactive oxygen species expression in these cells. Treating C57BL/6 mice with a specific inhibitor for Akt-2, but not Akt-1, provides protection from lethal C. albicans infection. Our data demonstrate that Akt-2 inhibits antifungal innate immunity by hampering neutrophil and macrophage recruitment to spleens and suppressing oxidative burst, myeloperoxidase activity, and NETosis. We thus describe a novel role for Akt-2 in the regulation of antifungal innate immunity and unveil Akt-2 as a potential target for the treatment of fungal sepsis.
    DOI:  https://doi.org/10.4049/jimmunol.2101003
  26. J Immunol. 2022 Sep 01. 209(5): 926-937
      Ab-secreting cells survive in niche microenvironments, but cellular responses driven by particular niche signals are incompletely defined. The TNF superfamily member a proliferation-inducing ligand (APRIL) can support the maturation of transitory plasmablasts into long-lived plasma cells. In this study, we explore the biological programs established by APRIL in human plasmablasts. Under conditions allowing the maturation of ex vivo- or in vitro-generated plasmablasts, we find that APRIL drives activation of ERK, p38, and JNK, accompanied by a classical NF-κB response and activation of the AKT/FOXO1 pathway. Time-course gene expression data resolve coordinated transcriptional responses propagated via immediate early genes and NF-κB targets and converging onto modules of genes enriched for MYC targets and metabolism/cell growth-related pathways. This response is shared between APRIL and an alternate TNF superfamily member CD40L but is not a feature of alternative niche signals delivered by IFN-α or SDF1. However, APRIL and CD40L responses also diverge. CD40L drives expression of genes related to the activated B cell state whereas APRIL does not. Thus, APRIL establishes a broad foundation for plasma cell longevity with features of cellular refueling while being uncoupled from support of the B cell state.
    DOI:  https://doi.org/10.4049/jimmunol.2100623
  27. Nat Rev Clin Oncol. 2022 Sep 23.
      Under the selective pressure of therapy, tumours dynamically evolve multiple adaptive mechanisms that make static interrogation of genomic alterations insufficient to guide treatment decisions. Clinical research does not enable the assessment of how various regulatory circuits in tumours are affected by therapeutic insults over time and space. Likewise, testing different precision oncology approaches informed by composite and ever-changing molecular information is hard to achieve in patients. Therefore, preclinical models that incorporate the biology and genetics of human cancers, facilitate analyses of complex variables and enable adequate population throughput are needed to pinpoint randomly distributed response predictors. Patient-derived xenograft (PDX) models are dynamic entities in which cancer evolution can be monitored through serial propagation in mice. PDX models can also recapitulate interpatient diversity, thus enabling the identification of response biomarkers and therapeutic targets for molecularly defined tumour subgroups. In this Review, we discuss examples from the past decade of the use of PDX models for precision oncology, from translational research to drug discovery. We elaborate on how and to what extent preclinical observations in PDX models have confirmed and/or anticipated findings in patients. Finally, we illustrate emerging methodological efforts that could broaden the application of PDX models by honing their predictive accuracy or improving their versatility.
    DOI:  https://doi.org/10.1038/s41571-022-00682-6
  28. Bioinformatics. 2022 Sep 16. 38(Supplement_2): ii141-ii147
       MOTIVATION: As complex tissues are typically composed of various cell types, deconvolution tools have been developed to computationally infer their cellular composition from bulk RNA sequencing (RNA-seq) data. To comprehensively assess deconvolution performance, gold-standard datasets are indispensable. Gold-standard, experimental techniques like flow cytometry or immunohistochemistry are resource-intensive and cannot be systematically applied to the numerous cell types and tissues profiled with high-throughput transcriptomics. The simulation of 'pseudo-bulk' data, generated by aggregating single-cell RNA-seq expression profiles in pre-defined proportions, offers a scalable and cost-effective alternative. This makes it feasible to create in silico gold standards that allow fine-grained control of cell-type fractions not conceivable in an experimental setup. However, at present, no simulation software for generating pseudo-bulk RNA-seq data exists.
    RESULTS: We developed SimBu, an R package capable of simulating pseudo-bulk samples based on various simulation scenarios, designed to test specific features of deconvolution methods. A unique feature of SimBu is the modeling of cell-type-specific mRNA bias using experimentally derived or data-driven scaling factors. Here, we show that SimBu can generate realistic pseudo-bulk data, recapitulating the biological and statistical features of real RNA-seq data. Finally, we illustrate the impact of mRNA bias on the evaluation of deconvolution tools and provide recommendations for the selection of suitable methods for estimating mRNA content. SimBu is a user-friendly and flexible tool for simulating realistic pseudo-bulk RNA-seq datasets serving as in silico gold-standard for assessing cell-type deconvolution methods.
    AVAILABILITY AND IMPLEMENTATION: SimBu is freely available at https://github.com/omnideconv/SimBu as an R package under the GPL-3 license.
    SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
    DOI:  https://doi.org/10.1093/bioinformatics/btac499
  29. Elife. 2022 Sep 22. pii: e71809. [Epub ahead of print]11
      CRISPR/Cas9 provides a highly efficient and flexible genome editing technology with numerous potential applications ranging from gene therapy to population control. Some proposed applications involve the integration of CRISPR/Cas9 endonucleases into an organism's genome, which raises questions about potentially harmful effects to the transgenic individuals. One example for which this is particularly relevant are CRISPR-based gene drives conceived for the genetic alteration of entire populations. The performance of such drives can strongly depend on fitness costs experienced by drive carriers, yet relatively little is known about the magnitude and causes of these costs. Here, we assess the fitness effects of genomic CRISPR/Cas9 expression in Drosophila melanogaster cage populations by tracking allele frequencies of four different transgenic constructs that allow us to disentangle 'direct' fitness costs due to the integration, expression, and target-site activity of Cas9, from fitness costs due to potential off-target cleavage. Using a maximum likelihood framework, we find that a model with no direct fitness costs but moderate costs due to off-target effects fits our cage data best. Consistent with this, we do not observe fitness costs for a construct with Cas9HF1, a high-fidelity version of Cas9. We further demonstrate that using Cas9HF1 instead of standard Cas9 in a homing drive achieves similar drive conversion efficiency. These results suggest that gene drives should be designed with high-fidelity endonucleases and may have implications for other applications that involve genomic integration of CRISPR endonucleases.
    Keywords:  D. melanogaster; evolutionary biology; genetics; genomics
    DOI:  https://doi.org/10.7554/eLife.71809
  30. Proc Natl Acad Sci U S A. 2022 Sep 27. 119(39): e2202157119
      CTNNB1, encoding β-catenin protein, is the most frequently altered proto-oncogene in hepatic neoplasms. In this study, we studied the significance and pathological mechanism of CTNNB1 gain-of-function mutations in hepatocarcinogenesis. Activated β-catenin not only triggered hepatic tumorigenesis but also exacerbated Tp53 deletion or hepatitis B virus infection-mediated liver cancer development in mouse models. Using untargeted metabolomic profiling, we identified boosted de novo pyrimidine synthesis as the major metabolic aberration in β-catenin mutant cell lines and livers. Oncogenic β-catenin transcriptionally stimulated AKT2, which then phosphorylated the rate-limiting de novo pyrimidine synthesis enzyme CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, dihydroorotase) on S1406 and S1859 to potentiate nucleotide synthesis. Moreover, inhibition of β-catenin/AKT2-stimulated pyrimidine synthesis axis preferentially repressed β-catenin mutant cell proliferation and tumor formation. Therefore, β-catenin active mutations are oncogenic in various preclinical liver cancer models. Stimulation of β-catenin/AKT2/CAD signaling cascade on pyrimidine synthesis is an essential and druggable vulnerability for β-catenin mutant liver cancer.
    Keywords:  AKT2; CAD; liver cancer; pyrimidine synthesis; β-catenin
    DOI:  https://doi.org/10.1073/pnas.2202157119