bims-pideca Biomed News
on Class IA PI3K signalling in development and cancer
Issue of 2022‒06‒26
sixteen papers selected by
Ralitsa Radostinova Madsen
University College London Cancer Institute

  1. Eur J Immunol. 2022 Jun 23.
      Regulatory T cell (Treg) therapy is under clinical investigation for the treatment of transplant rejection, autoimmune disease, and graft-versus-host disease. With the advent of genome editing, attention has turned to reinforcing Treg function for therapeutic benefit. A hallmark of Tregs is dampened activation of PI3K-AKT signalling, of which PTEN is a major negative regulator. Loss-of-function studies of PTEN, however, have not conclusively shown a requirement for PTEN in upholding Treg function and stability. Using CRISPR-based genome editing in human Tregs, we show that PTEN ablation does not cause a global defect in Treg function and stability; rather, it selectively blocks their ability to suppress antigen-presenting cells. PTEN-KO Tregs exhibit elevated glycolytic activity, upregulate FOXP3, maintain a Treg phenotype, and have no discernable defects in lineage stability. Functionally, PTEN is dispensable for human Treg-mediated inhibition of T cell activity in vitro and in vivo, but is required for suppression of costimulatory molecule expression by antigen-presenting cells. These data are the first to define a role for a signalling pathway in controlling a subset of human Treg activity. Moreover, they point to the functional necessity of PTEN-regulated PI3K-AKT activity for optimal human Treg function. This article is protected by copyright. All rights reserved.
    Keywords:  CRISPR-Cas9; PI3K-AKT; PTEN; immune regulation; regulatory T cells
  2. Front Oncol. 2022 ;12 862806
      Purpose: Tumor-microenvironment interactions are important determinants of drug resistance in colorectal cancer (CRC). We, therefore, set out to understand how interactions between genetically characterized CRC cells and stromal fibroblasts might influence response to molecularly targeted inhibitors.Techniques: Sensitivity to PI3K/AKT/mTOR pathway inhibitors of CRC cell lines, with known genetic background, was investigated under different culture conditions [serum-free medium, fibroblasts' conditioned medium (CM), direct co-culture]. Molecular pathway activation was monitored using Western Blot analysis. Immunoprecipitation was used to detect specific mTOR complex activation. Immunofluorescence was used to analyze cellular PTEN distribution, while different mutant PTEN plasmids were used to map the observed function to specific PTEN protein domains.
    Results: Exposure to fibroblast-CM resulted in increased growth-inhibitory response to double PI3K/mTOR inhibitors in PTEN-competent CRC cell lines harboring KRAS and PI3K mutations. Such functional effect was attributable to fibroblast-CM induced paradoxical PI3K/mTORC1 pathway activation, occurring in the presence of a functional PTEN protein. At a molecular level, fibroblast-CM induced C-tail phosphorylation and cytoplasmic redistribution of the PTEN protein, thereby impairing its lipid phosphatase function and favored the formation of active, RAPTOR-containing, mTORC1 complexes. However, PTEN's lipid phosphatase function appeared to be dispensable, while complex protein-protein interactions, also involving PTEN/mTOR co-localization and subcellular distribution, were crucial for both mTORC1 activation and sensitivity to double PI3K/mTOR inhibitors.
    Data Interpretation: Microenvironmental cues, in particular soluble factors produced by stromal fibroblasts, profoundly influence PI3K pathway signaling and functional response to specific inhibitors in CRC cells, depending on their mutational background and PTEN status.
    Keywords:  CRC; PI3K signaling; PTEN; fibroblasts; soluble factors
  3. Front Oncol. 2022 ;12 850515
      Background: The detection of phosphatidylinositol-3 kinase catalytic alpha (PIK3CA) gene mutations in breast cancer is a key step to design personalizing an optimal treatment strategy. Traditional genetic testing methods are invasive and time-consuming. It is urgent to find a non-invasive method to estimate the PIK3CA mutation status. Ultrasound (US), one of the most common methods for breast cancer screening, has the advantages of being non-invasive, fast imaging, and inexpensive. In this study, we propose to develop a deep convolutional neural network (DCNN) to identify PIK3CA mutations in breast cancer based on US images.Materials and Methods: We retrospectively collected 312 patients with pathologically confirmed breast cancer who underwent genetic testing. All US images (n=800) of breast cancer patients were collected and divided into the training set (n=600) and test set (n=200). A DCNN-Improved Residual Network (ImResNet) was designed to identify the PIK3CA mutations. We also compared the ImResNet model with the original ResNet50 model, classical machine learning models, and other deep learning models.
    Results: The proposed ImResNet model has the ability to identify PIK3CA mutations in breast cancer based on US images. Notably, our ImResNet model outperforms the original ResNet50, DenseNet201, Xception, MobileNetv2, and two machine learning models (SVM and KNN), with an average area under the curve (AUC) of 0.775. Moreover, the overall accuracy, average precision, recall rate, and F1-score of the ImResNet model achieved 74.50%, 74.17%, 73.35%, and 73.76%, respectively. All of these measures were significantly higher than other models.
    Conclusion: The ImResNet model gives an encouraging performance in predicting PIK3CA mutations based on breast US images, providing a new method for noninvasive gene prediction. In addition, this model could provide the basis for clinical adjustments and precision treatment.
    Keywords:  PIK3CA; breast cancer; deep learning; gene mutation; ultrasonic image
  4. Nat Metab. 2022 Jun 20.
      Angiogenesis, the process by which endothelial cells (ECs) form new blood vessels from existing ones, is intimately linked to the tissue's metabolic milieu and often occurs at nutrient-deficient sites. However, ECs rely on sufficient metabolic resources to support growth and proliferation. How endothelial nutrient acquisition and usage are regulated is unknown. Here we show that these processes are instructed by Yes-associated protein 1 (YAP)/WW domain-containing transcription regulator 1 (WWTR1/TAZ)-transcriptional enhanced associate domain (TEAD): a transcriptional module whose function is highly responsive to changes in the tissue environment. ECs lacking YAP/TAZ or their transcriptional partners, TEAD1, 2 and 4 fail to divide, resulting in stunted vascular growth in mice. Conversely, activation of TAZ, the more abundant paralogue in ECs, boosts proliferation, leading to vascular hyperplasia. We find that YAP/TAZ promote angiogenesis by fuelling nutrient-dependent mTORC1 signalling. By orchestrating the transcription of a repertoire of cell-surface transporters, including the large neutral amino acid transporter SLC7A5, YAP/TAZ-TEAD stimulate the import of amino acids and other essential nutrients, thereby enabling mTORC1 activation. Dissociating mTORC1 from these nutrient inputs-elicited by the loss of Rag GTPases-inhibits mTORC1 activity and prevents YAP/TAZ-dependent vascular growth. Together, these findings define a pivotal role for YAP/TAZ-TEAD in controlling endothelial mTORC1 and illustrate the essentiality of coordinated nutrient fluxes in the vasculature.
  5. Cancer Discov. 2022 Jun 23. OF1-OF13
      Phenotypic plasticity describes the ability of cancer cells to undergo dynamic, nongenetic cell state changes that amplify cancer heterogeneity to promote metastasis and therapy evasion. Thus, cancer cells occupy a continuous spectrum of phenotypic states connected by trajectories defining dynamic transitions upon a cancer cell state landscape. With technologies proliferating to systematically record molecular mechanisms at single-cell resolution, we illuminate manifold learning techniques as emerging computational tools to effectively model cell state dynamics in a way that mimics our understanding of the cell state landscape. We anticipate that "state-gating" therapies targeting phenotypic plasticity will limit cancer heterogeneity, metastasis, and therapy resistance.SIGNIFICANCE: Nongenetic mechanisms underlying phenotypic plasticity have emerged as significant drivers of tumor heterogeneity, metastasis, and therapy resistance. Herein, we discuss new experimental and computational techniques to define phenotypic plasticity as a scaffold to guide accelerated progress in uncovering new vulnerabilities for therapeutic exploitation.
  6. Nat Biotechnol. 2022 Jun 20.
      Identification of cancer driver mutations that confer a proliferative advantage is central to understanding cancer; however, searches have often been limited to protein-coding sequences and specific non-coding elements (for example, promoters) because of the challenge of modeling the highly variable somatic mutation rates observed across tumor genomes. Here we present Dig, a method to search for driver elements and mutations anywhere in the genome. We use deep neural networks to map cancer-specific mutation rates genome-wide at kilobase-scale resolution. These estimates are then refined to search for evidence of driver mutations under positive selection throughout the genome by comparing observed to expected mutation counts. We mapped mutation rates for 37 cancer types and applied these maps to identify putative drivers within intronic cryptic splice regions, 5' untranslated regions and infrequently mutated genes. Our high-resolution mutation rate maps, available for web-based exploration, are a resource to enable driver discovery genome-wide.
  7. Methods Mol Biol. 2022 ;2508 235-260
      The CRISPR-Cas9 technology has revolutionized the scope and pace of biomedical research, enabling the targeting of specific genomic sequences for a wide spectrum of applications. Here we describe assays to functionally interrogate mutations identified in cancer cells utilizing both CRISPR-Cas9 nuclease and base editors. We provide guidelines to interrogate known cancer driver mutations or functionally screen for novel vulnerability mutations with these systems in characterized human cancer cell lines. The proposed platform should be transferable to primary cancer cells, opening up a path for precision oncology on a functional level.
    Keywords:  CRISPR-Cas9; Cancer cell lines; Mutations
  8. Cell Metab. 2022 Jun 14. pii: S1550-4131(22)00223-6. [Epub ahead of print]
      In this review, we focus on recent developments in our understanding of nutrient-induced insulin secretion that challenge a key aspect of the "canonical" model, in which an oxidative phosphorylation-driven rise in ATP production closes KATP channels. We discuss the importance of intrinsic β cell metabolic oscillations; the phasic alignment of relevant metabolic cycles, shuttles, and shunts; and how their temporal and compartmental relationships align with the triggering phase or the secretory phase of pulsatile insulin secretion. Metabolic signaling components are assigned regulatory, effectory, and/or homeostatic roles vis-à-vis their contribution to glucose sensing, signal transmission, and resetting the system. Taken together, these functions provide a framework for understanding how allostery, anaplerosis, and oxidative metabolism are integrated into the oscillatory behavior of the secretory pathway. By incorporating these temporal as well as newly discovered spatial aspects of β cell metabolism, we propose a much-refined MitoCat-MitoOx model of the signaling process for the field to evaluate.
  9. Proc Natl Acad Sci U S A. 2022 Jun 28. 119(26): e2200364119
      Voltage-sensing phosphatase (VSP) consists of a voltage sensor domain (VSD) and a cytoplasmic catalytic region (CCR), which is similar to phosphatase and tensin homolog (PTEN). How the VSD regulates the innate enzyme component of VSP remains unclear. Here, we took a combined approach that entailed the use of electrophysiology, fluorometry, and structural modeling to study the electrochemical coupling in Ciona intestinalis VSP. We found that two hydrophobic residues at the lowest part of S4 play an essential role in the later transition of VSD-CCR coupling. Voltage clamp fluorometry and disulfide bond locking indicated that S4 and its neighboring linker move as one helix (S4-linker helix) and approach the hydrophobic spine in the CCR, a structure located near the cell membrane and also conserved in PTEN. We propose that the hydrophobic spine operates as a hub for translating an electrical signal into a chemical one in VSP.
    Keywords:  Anap; hydrophobicity; phosphoinositide; voltage sensor domain; voltage-sensing phosphatase
  10. Am J Physiol Endocrinol Metab. 2022 Jun 20.
      Mammalian target of rapamycin (mTOR) kinase is an essential hub where nutrients and growth factors converge to control cellular metabolism. mTOR interacts with different accessory proteins to form complexes 1 and 2 (mTORC); and each complex has different intracellular targets. Although mTORC1 role in β-cells has been extensively studied, less is known about mTORC2 function in β-cells. Here we show that mice with constitutive and inducible β-cell specific deletion of RICTOR (βRicKO and iβRicKO mice, respectively) are glucose intolerant due to impaired insulin secretion when glucose is injected intraperitoneally. Decreased insulin secretion in βRicKO islets was caused by abnormal actin polymerization. Interestingly, when glucose was administered orally, no difference in glucose homeostasis and insulin secretion were observed, suggesting that incretins are counteracting the mTOC2 deficiency. Mechanistically, glucagon-like peptide-1 (GLP-1), but not gastric inhibitory polypeptide (GIP), rescued insulin secretion in vivo and in vitro by improving actin polymerization in βRicKO islets. In conclusion, mTORC2 regulates glucose-stimulates insulin secretion by promoting actin filament remodeling.
    Keywords:  Actin Remodeling; Incretins; Insulin Secretion; Rictor; mTORC2
  11. Int J Mol Sci. 2022 Jun 07. pii: 6361. [Epub ahead of print]23(12):
      Neutrophils are specialized immune cells that are essential constituents of the innate immune response. They defend the organism against pathogens through various mechanisms. It was reported that phosphatidylinositols are key players in neutrophil functions, especially in the activity of class-I phosphoinositide 3-kinases (PI3Ks). P110δ, one of the PI3K subunits, is mostly expressed in immune cells, and its activity plays an important role in inflammatory responses. The aim of this study was to investigate the role of p110δ in neutrophil antimicrobial functions, activation status and cytokine production. To this end, we used bone marrow and splenic neutrophils isolated from a murine model expressing catalytically inactive p110δD910A/D910A. The level of phagocytosis and degranulation, the expressions of activation markers and cytokine production were determined by flow cytometry. ROS generation and NET release were assessed by fluorometry and fluorescent microscopy. We observed a significantly higher percentage of CD80-positive cells among the splenic granulocytes and found granulocytes subpopulations of differing phenotypes between WT and p110δD910A/D910A mice by multiparametric tSNE analysis. Moreover, we detected some differences in the expressions of activation markers, intracellular production of cytokines and bacterial killing. However, we did not observe any alterations in the selected neutrophil functions in p110δ mutant mice. Altogether, our data suggest that the catalytic p110 subunit(s), other than p110δ, is a key player in most neutrophil functions in mice. A follow-up study to correlate these in vitro results with in vivo observations is highly recommended.
    Keywords:  degranulation; neutrophil extracellular traps; neutrophils; p110δ subunit; phagocytosis; phosphoinositide 3-kinase; reactive oxygen species
  12. Mol Genet Genomics. 2022 Jun 22.
      BRCA1 and BRCA2 are the two most commonly mutated tumor suppressor genes associated with hereditary breast cancer (BC). Also, mutations in TP53, PIK3CA, PTEN and AKT1 were observed at a high frequency in BC with their mutation spectrum exhibiting a subgroup particularity with enormous clinical significance in the prevention, classification and treatment of cancers. Unfortunately, the mutation spectrum of these genes is still unknown in most Sub-Saharan African population. Therefore, using samples from 133 unselected BC patients, we aimed to assess the contribution of these mutations by direct Sanger sequencing. The analysis revealed pathogenic germline variants on BRCA1 exon 11 (c.3331C > T, 0.75%) and BRCA2 exon 11 (c.5635G > T, c.6211delA; 1.5%). Five other pathogenic variants were identified in 61 of the 133 subjects (45.86%), with 39.09% for PIK3CA, 12.78% for TP53. Interestingly, a variant in PIK3CA found in high frequency in our population was different from the one usually found in other populations (c.1634A > C, 38.34%), and four patients carried mutations linked to Cowen Syndrome 5 c.[1634A > C;1658_1659delGTinsC]. A novel variant (c.312G > T) was found in TP53 gene at 12.78%. Overall, mutation carriers were found more in Her2 negative and in patients that underwent surgery and chemotherapy. No pathogenic variant was found in PTEN and AKT1. Our population displayed a high frequency of PIK3CA mutations with an unusual distribution and spectrum as well as a relatively low prevalence of BRCA mutations. Our results provided novel data on an unstudied population and may help in prevention, and the establishment of suitable therapeutic approaches for our population.
    Keywords:  Breast cancer; Burkina Faso; Pathogenic variant; Prevention; Sanger sequencing
  13. Nat Metab. 2022 Jun 23.
      Production of oxidized biomass, which requires regeneration of the cofactor NAD+, can be a proliferation bottleneck that is influenced by environmental conditions. However, a comprehensive quantitative understanding of metabolic processes that may be affected by NAD+ deficiency is currently missing. Here, we show that de novo lipid biosynthesis can impose a substantial NAD+ consumption cost in proliferating cancer cells. When electron acceptors are limited, environmental lipids become crucial for proliferation because NAD+ is required to generate precursors for fatty acid biosynthesis. We find that both oxidative and even net reductive pathways for lipogenic citrate synthesis are gated by reactions that depend on NAD+ availability. We also show that access to acetate can relieve lipid auxotrophy by bypassing the NAD+ consuming reactions. Gene expression analysis demonstrates that lipid biosynthesis strongly anti-correlates with expression of hypoxia markers across tumor types. Overall, our results define a requirement for oxidative metabolism to support biosynthetic reactions and provide a mechanistic explanation for cancer cell dependence on lipid uptake in electron acceptor-limited conditions, such as hypoxia.
  14. Mol Cell. 2022 Jun 21. pii: S1097-2765(22)00492-0. [Epub ahead of print]
      The tolerance of amino acid starvation is fundamental to robust cellular fitness. Asparagine depletion is lethal to some cancer cells, a vulnerability that can be exploited clinically. We report that resistance to asparagine starvation is uniquely dependent on an N-terminal low-complexity domain of GSK3α, which its paralog GSK3β lacks. In response to depletion of specific amino acids, including asparagine, leucine, and valine, this domain mediates supramolecular assembly of GSK3α with ubiquitin-proteasome system components in spatially sequestered cytoplasmic bodies. This effect is independent of mTORC1 or GCN2. In normal cells, GSK3α promotes survival during essential amino acid starvation. In human leukemia, GSK3α body formation predicts asparaginase resistance, and sensitivity to asparaginase combined with a GSK3α inhibitor. We propose that GSK3α body formation provides a cellular mechanism to maximize the catalytic efficiency of proteasomal protein degradation in response to amino acid starvation, an adaptive response co-opted by cancer cells for asparaginase resistance.
    Keywords:  GSK3; Wnt; asparaginase; protein degradation; ubiquitin-proteasome system
  15. JCI Insight. 2022 Jun 23. pii: e150461. [Epub ahead of print]
      The ribosomal protein S6 kinase 1 (S6K1) is a relevant effector downstream the mammalian target of rapamycin complex 1 (mTORC1), best known for its role in the control of lipid homeostasis. Consistent with this, mice lacking the S6k1 gene have a defect in their ability to induce the commitment of fat precursor cells to the adipogenic lineage, which contributes to a significant reduction of fat mass. Here, we assess the therapeutic blockage of S6K1 in diet-induced obese mice challenged with LY2584702 tosylate, a specific oral S6K1 inhibitor initially developed for the treatment of solid tumours. We show that diminished S6K1 activity hampers fat mass expansion and ameliorates dyslipidaemia and hepatic steatosis, while modifying transcriptome-wide gene expression programs relevant for adipose and liver function. Accordingly, impaired mTORC1 signalling in fat (decreased) and liver (increased) co-segregated with defective epithelial-mesenchymal transition, being prominent the decreased expression of Cd36 (coding for a fatty acid translocase) and Lgals1 (Galectin 1) in both tissues. All these factors combined align with reduced adipocyte size and improved lipidomic signatures in the liver, while hepatic steatosis and hypertriglyceridemia were improved in treatments lasting either 3 months or 6 weeks.
    Keywords:  Adipose tissue; Metabolism; Obesity; Pharmacology; Therapeutics