bims-pideca Biomed News
on Class IA PI3K signalling in development and cancer
Issue of 2022–05–01
seventeen papers selected by
Ralitsa Radostinova Madsen, University College London



  1. Nat Cell Biol. 2022 Apr 28.
      Despite their low abundance, phosphoinositides play a central role in membrane traffic and signalling. PtdIns(3,4,5)P3 and PtdIns(3,4)P2 are uniquely important, as they promote cell growth, survival and migration. Pathogenic organisms have developed means to subvert phosphoinositide metabolism to promote successful infection and their survival in host organisms. We demonstrate that PtdIns(3,4)P2 is a major product generated in host cells by the effectors of the enteropathogenic bacteria Salmonella and Shigella. Pharmacological, gene silencing and heterologous expression experiments revealed that, remarkably, the biosynthesis of PtdIns(3,4)P2 occurs independently of phosphoinositide 3-kinases. Instead, we found that the Salmonella effector SopB, heretofore believed to be a phosphatase, generates PtdIns(3,4)P2 de novo via a phosphotransferase/phosphoisomerase mechanism. Recombinant SopB is capable of generating PtdIns(3,4,5)P3 and PtdIns(3,4)P2 from PtdIns(4,5)P2 in a cell-free system. Through a remarkable instance of convergent evolution, bacterial effectors acquired the ability to synthesize 3-phosphorylated phosphoinositides by an ATP- and kinase-independent mechanism, thereby subverting host signalling to gain entry and even provoke oncogenic transformation.
    DOI:  https://doi.org/10.1038/s41556-022-00895-y
  2. Nat Rev Clin Oncol. 2022 Apr 28.
      Numerous agents targeting various phosphatidylinositol 3-kinase (PI3K) pathway components, including PI3K, AKT and mTOR, have been tested in oncology clinical trials, resulting in regulatory approvals for the treatment of selected patients with breast cancer, certain other solid tumours or particular haematological malignancies. However, given the prominence of PI3K signalling in cancer and the crucial role of this pathway in linking cancer growth with metabolism, these clinical results could arguably be improved upon. In this Review, we discuss past and present efforts to overcome the somewhat limited clinical efficacy of PI3Kα pathway inhibitors, including optimization of inhibitor specificity, patient selection and biomarkers across cancer types, with a focus on breast cancer, as well as identification and abrogation of signalling-related and metabolic mechanisms of resistance, and interventions to improve management of prohibitive adverse events. We highlight the advantages and limitations of laboratory-based model systems used to study the PI3K pathway, and propose technologies and experimental inquiries to guide the future clinical deployment of PI3K pathway inhibitors in the treatment of cancer.
    DOI:  https://doi.org/10.1038/s41571-022-00633-1
  3. J Neurol Neurosurg Psychiatry. 2022 Apr 27. pii: jnnp-2022-328901. [Epub ahead of print]
      Somatic gain-of-function (GOF) mutations in phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), the catalytic subunit of phosphoinositide 3-kinase (PI3K), have been recently discovered in cerebral cavernous malformations (CCMs), raising the possibility that the activation of PI3K pathways is a possible universal regulator of vascular morphogenesis. However, there have been contradicting data presented among various groups and studies. To enhance the current understanding of vascular anomalies, it is essential to explore this possible relationship between altered PI3K signalling pathways and its influence on the pathogenesis of CCMs. GOF PIK3CA-mutants have been linked to overgrowth syndromes, allowing this group of disorders, resulting from somatic activating mutations in PIK3CA, to be collectively named as PIK3CA-related overgrowth spectrum disorders. This paper reviews and attempts to conceptualise the relationships and differences among clinical presentations, genotypic and phenotypic correlations and possible coexistence of PIK3CA and CCM mutations/phenotypes in CCM lesions. Finally, we present a model reflecting our hypothetical understanding of CCM pathogenesis based on a systematic review and conceptualisation of data obtained from other studies.
    Keywords:  cerebrovascular; cerebrovascular disease; epilepsy; genetics; stroke
    DOI:  https://doi.org/10.1136/jnnp-2022-328901
  4. Cold Spring Harb Mol Case Stud. 2022 Apr;pii: a006188. [Epub ahead of print]8(3):
      The megalencephaly-capillary malformation (MCAP) syndrome is an overgrowth disorder caused by mosaic gain-of-function variants in PIK3CA It is characterized by megalencephaly or hemimegalencephaly, vascular malformations, somatic overgrowth, among other features. Epilepsy is commonly associated with MCAP, and a subset of individuals have cortical malformations requiring resective epilepsy surgery. Like other mosaic disorders, establishing a molecular diagnosis is largely achieved by screening lesional tissues (such as brain or skin), with a low diagnostic yield from peripheral tissues (such as blood). Therefore, in individuals with MCAP in whom lesional tissues are scarce or unavailable or those ineligible for epilepsy surgery, establishing a molecular diagnosis can be challenging. Here we report on the utility of cerebrospinal fluid (CSF)-derived cfDNA for the molecular diagnosis of an individual with MCAP syndrome harboring a mosaic PIK3CA variant (c.3139C > T, p.His1047Tyr). The proband presented with asymmetric megalencephaly without significant dysgyria. He did not have refractory epilepsy and was therefore not a candidate for epilepsy surgery. However, he developed diffuse large B-cell lymphoma (DLBCL) in late childhood, with four CSF samples obtained via lumbar puncture for cancer staging during which one sample was collected for cfDNA extraction and sequencing. PIK3CA variant allele fractions in CSF cell-free DNA (cfDNA), skin fibroblasts, and peripheral blood were 3.08%, 37.31%, and 2.04%, respectively. This report illustrates the utility of CSF-derived cfDNA in MCAP syndrome. Minimally invasive-based molecular diagnostic approaches utilizing cfDNA not only facilitate accurate genetic diagnosis but also have important therapeutic implications for individuals with refractory epilepsy as repurposed PI3K-AKT-MTOR pathway-inhibitors become more widely available.
    Keywords:  hemimegalencephaly; macrocephaly at birth; overgrowth
    DOI:  https://doi.org/10.1101/mcs.a006188
  5. Front Oncol. 2021 ;11 784985
       Background: Neoadjuvant chemotherapy (NAC) has been expanded to hormone receptor (HR) positive breast cancer (BC) patients with operable disease, to increase the likelihood of breast-conserving surgery. Genomic profiling at baseline would reveal NAC response relevant genomic features and signaling pathways, guiding clinical NAC utilization based on patients' genomic characteristics.
    Methods: We prospectively studied stage II/III BC patients who were eligible for breast-conserving surgery. Patients received epirubicin and cyclophosphamide for 4 cycles, followed by another 4-cycle docetaxel, and human epidermal growth factor receptor (HER2) positive patients were additionally treated with herceptin when using docetaxel (EC-T(H)). NAC responses were evaluated as pathologic complete response (pCR) or non-pathologic complete response (non-pCR). Genomic features related to NAC responses were identified by profiling baseline tumor tissues sampled one day before NAC, using whole-exome sequencing. Differentially expressed genes and up-/down-regulated pathways were investigated by performing RNA-sequencing.
    Results: A total of 25 stage II/III BC patients were enrolled, including 5 patients ultimately evaluated as pCR and 20 patients evaluated as non-pCR. PIK3CA (48%) and TP53 (40%) mutations were enriched in patients not achieving pCR. Mutated phosphatidylinositol-3-kinase-AKT (PI3K-AKT) pathway and homologous recombinational repair pathway were also more frequently observed in patients evaluated as non-pCR. Significant arm-level amplifications (8q24.23 and 17q12) and deletions (1p32.2, 4p14, 7q11.23, 10q21.3, 11q23.3, etc.) were identified among patients not achieving pCR, while patients achieving pCR displayed no significant copy number alterations. Significantly up-regulated expression of PI3K-AKT pathway genes was also detected among patients failed to achieve pCR, compared to patients achieving pCR.
    Conclusion: Compared to BC patients achieving pCR to NAC, aberrant activation of PI3K-AKT pathway genes were more frequently observed in patients not achieving pCR, consistent with the significant up-regulation of PI3K-AKT pathway gene expression in the non-pCR subgroup. Together, these findings indicate that upregulated PI3K-AKT pathway serves as a potential indicator of lack of response to NAC in stage II/III BC patients, and other effective therapeutic options are urgently needed for those resistant patients.
    Keywords:  PI3K-AKT pathway; PIK3CA mutations; neoadjuvant chemotherapy (NAC); pathologic complete response (pCR); stage II/III breast cancer (BC)
    DOI:  https://doi.org/10.3389/fonc.2021.784985
  6. Cell Rep Methods. 2022 Jan 24. 2(1): 100138
      Identifying cellular phosphorylation pathways based on kinase-substrate relationships is a critical step to understanding the regulation of physiological functions in cells. Mass spectrometry-based phosphoproteomics workflows have made it possible to comprehensively collect information on individual phosphorylation sites in a variety of samples. However, there is still no generic approach to uncover phosphorylation networks based on kinase-substrate relationships in rare cell populations. Here, we describe a motif-centric phosphoproteomics approach combined with multiplexed isobaric labeling, in which in vitro kinase reactions are used to generate targeted phosphopeptides, which are spiked into one of the isobaric channels to increase detectability. Proof-of-concept experiments demonstrate selective and comprehensive quantification of targeted phosphopeptides by using multiple kinases for motif-centric channels. More than 7,000 tyrosine phosphorylation sites were quantified from several tens of micrograms of starting materials. This approach enables the quantification of multiple phosphorylation pathways under physiological or pathological regulation in a motif-centric manner.
    Keywords:  EGFR signaling network; TMT quantitation; boosting MS signal; in vitro kinase reaction; isobaric tag; kinase-substrate relationship; motif-centric; phosphopeptide enrichment; phosphoproteome; tyrosine phosphoproteome
    DOI:  https://doi.org/10.1016/j.crmeth.2021.100138
  7. Cancer Res Treat. 2022 Apr 20.
       Purpose: The purpose of this study was to investigate the concordance rate of PIK3CA mutations between primary and matched distant metastatic sites in patients with breast cancer and to verify whether there are differences in the frequency of PIK3CA hotspot mutations depending on the metastatic sites involved.
    Materials and Methods: Archived formalin-fixed paraffin-embedded (FFPE) specimens of primary breast and matched distant metastatic tumors were retrospectively obtained for 49 patients. Additionally, 40 archived FFPE specimens were independently collected from different breast cancer metastatic sites, which were limited to three common sites: the liver, brain, and lung. PIK3CA mutations were analyzed using droplet digital PCR, including hotspots involving exons 9 and 20.
    Results: After analysis of 49 breast tumors with matched metastasis sites, 87.8% showed concordance in PIK3CA mutation status. According to PIK3CA hotspot mutation testing in 89 cases of breast cancer metastatic sites, the proportion of PIK3CA mutations at sites of metastasis involving the liver, brain, and lung was 37.5%, 28.6%, and 42.9%, respectively, which did not result in statistical significance.
    Conclusion: The high concordance of PIK3CA mutation status between primary and matched metastasis sites suggests that metastatic sites, regardless of the metastatic organ, could be considered sample sources for PIK3CA mutation testing for improved therapeutic strategies in patients with metastatic breast cancer.
    Keywords:  Breast neoplasms; Droplet Digital PCR; Molecular Diagnostics; Neoplasm metastasis; PIK3CA
    DOI:  https://doi.org/10.4143/crt.2022.001
  8. NAR Cancer. 2022 Jun;4(2): zcac014
    PDXNet Consortium
      We created the PDX Network (PDXNet) portal (https://portal.pdxnetwork.org/) to centralize access to the National Cancer Institute-funded PDXNet consortium resources, to facilitate collaboration among researchers and to make these data easily available for research. The portal includes sections for resources, analysis results, metrics for PDXNet activities, data processing protocols and training materials for processing PDX data. Currently, the portal contains PDXNet model information and data resources from 334 new models across 33 cancer types. Tissue samples of these models were deposited in the NCI's Patient-Derived Model Repository (PDMR) for public access. These models have 2134 associated sequencing files from 873 samples across 308 patients, which are hosted on the Cancer Genomics Cloud powered by Seven Bridges and the NCI Cancer Data Service for long-term storage and access with dbGaP permissions. The portal includes results from freely available, robust, validated and standardized analysis workflows on PDXNet sequencing files and PDMR data (3857 samples from 629 patients across 85 disease types). The PDXNet portal is continuously updated with new data and is of significant utility to the cancer research community as it provides a centralized location for PDXNet resources, which support multi-agent treatment studies, determination of sensitivity and resistance mechanisms, and preclinical trials.
    DOI:  https://doi.org/10.1093/narcan/zcac014
  9. Biochem Biophys Res Commun. 2022 Apr 12. pii: S0006-291X(22)00497-1. [Epub ahead of print]610 170-175
      Rac1 plays an important role in contraction-stimulated muscle glucose uptake, but the mechanism is not fully elucidated. We previously identified Rac1-dependent activation of Akt played a partial role in contraction-stimulated GLUT4 translocation to the cell surface of C2C12 myotubes. Recognizing that contraction activates CaMKII in muscle and CaMKII is known to regulate Rac1 activity in other systems, here we investigated the relationship between CaMKII, Akt and contraction-stimulated glucose uptake. Expression of a constitutively-active mutant of CaMKIIδ stimulated Akt phosphorylation that was inhibited by Rac1 inhibitor II. C2C12 myotubes were contracted by electrical pulse stimulation (EPS). We observed the CaMKII inhibitor, KN-93 and CaMKIIδ siRNA-mediated knockdown, reduced EPS-induced Akt phosphorylation in C2C12 myotubes. ITX3, an inhibitor of the Rac-GTPase Kalirin and Kalirin siRNA-mediated knockdown reduced EPS-stimulated Akt phosphorylation in myotubes. In addition, the Akt inhibitor MK2206 partly reduced EPS-stimulated glucose uptake without simultaneously affecting CaMKII phosphorylation and Kalirin protein abundance. Our findings demonstrate EPS leads to Akt activation through a CaMKII-Kalirin-Rac1 signaling pathway and partly regulates contraction-stimulated glucose uptake in muscle cells.
    Keywords:  Akt1/2; Calcium/calmodulin-dependent protein kinase II; Contraction; Glucose uptake; Kalirin; Rac1
    DOI:  https://doi.org/10.1016/j.bbrc.2022.03.152
  10. J Cell Mol Med. 2022 Apr 30.
      Idiopathic multicentric Castleman disease (iMCD) is a rare and life-threatening haematologic disorder involving polyclonal lymphoproliferation and organ dysfunction due to excessive cytokine production, including interleukin-6 (IL-6). Clinical trial and real-world data demonstrate that IL-6 inhibition is effective in 34-50% of patients. mTOR, which functions through mTORC1 and mTORC2, is a recently discovered therapeutic target. The mTOR inhibitor sirolimus, which preferentially inhibits mTORC1, has led to sustained remission in a small cohort of anti-IL-6-refractory iMCD patients with thrombocytopenia, anasarca, fever, renal dysfunction and organomegaly (iMCD-TAFRO). However, sirolimus has not shown uniform effect, potentially due to its limited mTORC2 inhibition. To investigate mTORC2 activation in iMCD, we quantified the mTORC2 effector protein pNDRG1 by immunohistochemistry of lymph node tissue from six iMCD-TAFRO and eight iMCD patients who do not meet TAFRO criteria (iMCD-not-otherwise-specified; iMCD-NOS). mTORC2 activation was increased in all regions of iMCD-TAFRO lymph nodes and the interfollicular space of iMCD-NOS compared with control tissue. Immunohistochemistry also revealed increased pNDRG1 expression in iMCD-TAFRO germinal centres compared with autoimmune lymphoproliferative syndrome (ALPS), an mTOR-driven, sirolimus-responsive lymphoproliferative disorder, and comparable staining between iMCD-NOS and ALPS. These results suggest increased mTORC2 activity in iMCD and that dual mTORC1/mTORC2 inhibitors may be a rational therapeutic approach.
    Keywords:  Castleman disease; TAFRO; autoimmune lymphoproliferative syndrome; iMCD; idiopathic multicentric Castleman disease; mTOR; mTORC2; pNDRG1
    DOI:  https://doi.org/10.1111/jcmm.17251
  11. Nat Chem Biol. 2022 May;18(5): 461-469
      Metabolites once considered solely in catabolism or anabolism turn out to have key regulatory functions. Among these, the citric acid cycle intermediate succinate stands out owing to its multiple roles in disparate pathways, its dramatic concentration changes and its selective cell release. Here we propose that succinate has evolved as a signaling modality because its concentration reflects the coenzyme Q (CoQ) pool redox state, a central redox couple confined to the mitochondrial inner membrane. This connection is of general importance because CoQ redox state integrates three bioenergetic parameters: mitochondrial electron supply, oxygen tension and ATP demand. Succinate, by equilibrating with the CoQ pool, enables the status of this central bioenergetic parameter to be communicated from mitochondria to the rest of the cell, into the circulation and to other cells. The logic of this form of regulation explains many emerging roles of succinate in biology, and suggests future research questions.
    DOI:  https://doi.org/10.1038/s41589-022-01004-8
  12. Nat Chem Biol. 2022 May;18(5): 451-460
      Over the past few years, we have seen an explosion of novel genetically encoded tools for measuring and manipulating metabolism in live cells and animals. Here, we will review the genetically encoded tools that are available, describe how these tools can be used and outline areas where future development is needed in this fast-paced field. We will focus on tools for direct measurement and manipulation of metabolites. Metabolites are master regulators of metabolism and physiology through their action on metabolic enzymes, signaling enzymes, ion channels and transcription factors, among others. We hope that this Perspective will encourage more people to use these novel reagents or even join this exciting new field to develop novel tools for measuring and manipulating metabolism.
    DOI:  https://doi.org/10.1038/s41589-022-01012-8
  13. Science. 2022 Apr 29. 376(6592): 476-483
      Genotoxic therapy such as radiation serves as a frontline cancer treatment, yet acquired resistance that leads to tumor reoccurrence is frequent. We found that cancer cells maintain viability during irradiation by reversibly increasing genome-wide DNA breaks, thereby limiting premature mitotic progression. We identify caspase-activated DNase (CAD) as the nuclease inflicting these de novo DNA lesions at defined loci, which are in proximity to chromatin-modifying CCCTC-binding factor (CTCF) sites. CAD nuclease activity is governed through phosphorylation by DNA damage response kinases, independent of caspase activity. In turn, loss of CAD activity impairs cell fate decisions, rendering cancer cells vulnerable to radiation-induced DNA double-strand breaks. Our observations highlight a cancer-selective survival adaptation, whereby tumor cells deploy regulated DNA breaks to delimit the detrimental effects of therapy-evoked DNA damage.
    DOI:  https://doi.org/10.1126/science.abi6378
  14. iScience. 2022 May 20. 25(5): 104186
      The protein kinase complex target of rapamycin complex 1 (TORC1) is a critical mediator of nutrient sensing that has been widely studied in cultured cells and yeast, yet our understanding of the regulatory activities of TORC1 in the context of a whole, multi-cellular organism is still very limited. Using Caenorhabditis elegans, we analyzed the DAF-15/Raptor-dependent phosphoproteome by quantitative mass spectrometry and characterized direct kinase targets by in vitro kinase assays. Here, we show new targets of TORC1 that indicate previously unknown regulation of transcription and autophagy. Our results further show that DAF-15/Raptor is differentially expressed during postembryonic development, suggesting a dynamic role for TORC1 signaling throughout the life span. This study provides a comprehensive view of the TORC1 phosphoproteome, reveals more than 100 DAF-15/Raptor-dependent phosphosites that reflect the complex function of TORC1 in a whole, multi-cellular organism, and serves as a rich resource to the field.
    Keywords:  Cell biology; Developmental biology; Functional aspects of cell biology; Omics; Proteomics
    DOI:  https://doi.org/10.1016/j.isci.2022.104186
  15. Nat Immunol. 2022 Apr 29.
      Type I innate lymphoid cells (ILC1s) are critical regulators of inflammation and immunity in mammalian tissues. However, their function in cancer is mostly undefined. Here, we show that a high density of ILC1s induces leukemia stem cell (LSC) apoptosis in mice. At a lower density, ILC1s prevent LSCs from differentiating into leukemia progenitors and promote their differentiation into non-leukemic cells, thus blocking the production of terminal myeloid blasts. All of these effects, which require ILC1s to produce interferon-γ after cell-cell contact with LSCs, converge to suppress leukemogenesis in vivo. Conversely, the antileukemia potential of ILC1s wanes when JAK-STAT or PI3K-AKT signaling is inhibited. The relevant antileukemic properties of ILC1s are also functional in healthy individuals and impaired in individuals with acute myeloid leukemia (AML). Collectively, these findings identify ILC1s as anticancer immune cells that might be suitable for AML immunotherapy and provide a potential strategy to treat AML and prevent relapse of the disease.
    DOI:  https://doi.org/10.1038/s41590-022-01198-y
  16. Dev Cell. 2022 Apr 18. pii: S1534-5807(22)00245-3. [Epub ahead of print]
      Senescence is a cellular state which involves cell cycle arrest and a proinflammatory phenotype, and it has traditionally been associated with cellular and organismal aging. However, increasing evidence suggests key roles in tissue growth and regrowth, especially during development and regeneration. Conversely, cellular plasticity-the capacity of cells to undergo identity change, including differentiation and dedifferentiation-is associated with development and regeneration but is now being investigated in the context of age-related diseases such as Alzheimer disease. Here, we discuss the paradox of the role for cellular senescence in cellular plasticity: senescence can act as a cell-autonomous barrier and a paracrine driver of plasticity. We provide a conceptual framework for integrating recent data and use the interplay between cellular senescence and plasticity to provide insight into age-related diseases. Finally, we argue that age-related diseases can be better deciphered when senescence is recognized as a core mechanism of regeneration and development.
    Keywords:  aging; cell plasticity; cellular senescence; differentiation; regeneration; wound healing
    DOI:  https://doi.org/10.1016/j.devcel.2022.04.005