Pharmacol Res. 2021 Mar 24. pii: S1043-6618(21)00163-8. [Epub ahead of print] 105579
The discovery of the phosphatidylinositol 3-kinase (PI 3-kinase) pathway was a major advance in understanding eukaryotic signal transduction. The high frequency of PI 3-kinase pathway mutations in many cancers stimulated the development of drugs targeting these oncogenic mutants. The PI 3-kinases are divided into three classes and Class I PI 3-kinases, which catalyze the phosphorylation of phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2) to generate phosphatidylinositol-3,4,5-trisphosphate (PIP3), are the main subject of this review. The class I PI 3-kinases are made up of p110α, p110β, p110δ, and p110γ catalytic subunits. These catalytic subunits are constitutively bound to regulatory subunits (p85α, p85β, p55γ, p101, and p87 proteins). The p85/p55 regulatory subunits heterodimerize with p110α or p110δ thereby forming complexes that are regulated chiefly by receptor protein-tyrosine kinases. The p101 and p87 subunits heterodimerize with p110γ to form complexes that are regulated mainly by G protein-coupled receptors (GPCRs). Complexes containing the p110β subunit are activated by receptor protein-tyrosine kinases as well as GPCRs. Following the generation of PIP3, the AKT and mTOR protein-serine/threonine kinases are activated leading to cell growth, proliferation, and survival. Like protein kinases, the PI 3-kinase domains consist of a bilobed structure connected by a hinge-linker segment. ATP and most PI 3-kinase and protein kinase inhibitors form hydrogen bonds with hinge residues. The small and large lobes of PI 3-kinases and protein kinases have a very similar three-dimensional structure called the protein kinase fold. Both PI 3-kinases and eukaryotic protein kinases possess an activation segment that begins with a DFG triad (aspartate-phenylalanine-glycine). The protein kinase catalytic loop has an HRD (histidine-arginine-aspartate) signature while that of the PI 3-kinases reverses the order with a DRH triad. Alpelisib is an orally effective FDA-approved PI 3-kinase-α inhibitor used for the treatment of breast cancer. Copanlisib, duvelisib, idelalisib, and umbralisib are PI 3-kinase-δ inhibitors that are approved for the third-line treatment of follicular lymphomas and other hematological disorders. Copanlisib is also a potent inhibitor of PI 3-kinase-α. Of the five approved drugs, all are orally bioavailable except copanlisib. Idelalisib interacts with the active conformation of PI 3-kinase-δ and is classified as a type I inhibitor. Alpelisib and copanlisib interact with inactive PI 3-kinase-α and PI 3-kinase-γ, respectively, and are classified as a type I½ antagonists. Except for umbralisib with a molecular weight of 571.5, all five drugs conform to the Lipinski rule of five for oral effectiveness. Copanlisib, however, must be given intravenously. Alpelisib and copanlisib inhibit PI 3-kinase-α, which is involved in insulin signaling, and both drugs promote insulin-resistance and produce hyperglycemia. The five FDA-approved PI 3-kinase inhibitors produce significant on-target toxicities, more so than many approved protein kinase antagonists. The development of PI 3-kinase inhibitors with fewer toxicities is an important long-term therapeutic goal.
Keywords: Acalabrutinib (PubChem CID: 71226662); Alpelisib (PubChem CID: 56649450); Breast cancer, Chronic lymphocytic leukemia; Copanlisib (PubChem CID: 135565596); Duvelisib (PubChem CID: 50905713); Follicular lymphoma; Fulvestrant (PubChem CID: 104741); Ibrutinib (PubChem CID: 24821094); Idelalisib (PubChem CID: 11625818); Insulin (PubChem CID: 16131098); Marginal zone lymphoma; PI 3-kinase structure; Phosphatidylinositol-3,4,5-trisphosphate (PubChem CID: 53477782); Small lymphocytic lymphoma; Umbralisib (PubChem CID: 72950888)