bims-pideca Biomed News
on Class IA PI3K signalling in development and cancer
Issue of 2020–06–14
fourteen papers selected by
Ralitsa Radostinova Madsen, University College London



  1. F1000Res. 2020 ;pii: F1000 Faculty Rev-450. [Epub ahead of print]9
      A complex molecular machinery converges on the surface of lysosomes to ensure that the growth-promoting signaling mediated by mechanistic target of rapamycin complex 1 (mTORC1) is tightly controlled by the availability of nutrients and growth factors. The final step in this activation process is dependent on Rheb, a small GTPase that binds to mTOR and allosterically activates its kinase activity. Here we review the mechanisms that determine the subcellular localization of Rheb (and the closely related RhebL1 protein) as well as the significance of these mechanisms for controlling mTORC1 activation. In particular, we explore how the relatively weak membrane interactions conferred by C-terminal farnesylation are critical for the ability of Rheb to activate mTORC1. In addition to supporting transient membrane interactions, Rheb C-terminal farnesylation also supports an interaction between Rheb and the δ subunit of phosphodiesterase 6 (PDEδ). This interaction provides a potential mechanism for targeting Rheb to membranes that contain Arl2, a small GTPase that triggers the release of prenylated proteins from PDEδ. The minimal membrane targeting conferred by C-terminal farnesylation of Rheb and RhebL1 distinguishes them from other members of the Ras superfamily that possess additional membrane interaction motifs that work with farnesylation for enrichment on the specific subcellular membranes where they engage key effectors. Finally, we highlight diversity in Rheb membrane targeting mechanisms as well as the potential for alternative mTORC1 activation mechanisms across species.
    Keywords:  Rheb; cancer; lysosome; mTOR; membranes; signaling
    DOI:  https://doi.org/10.12688/f1000research.22367.1
  2. Nat Commun. 2020 Jun 08. 11(1): 2869
      Lymphatic malformations (LMs) are debilitating vascular anomalies presenting with large cysts (macrocystic) or lesions that infiltrate tissues (microcystic). Cellular mechanisms underlying LM pathology are poorly understood. Here we show that the somatic PIK3CAH1047R mutation, resulting in constitutive activation of the p110α PI3K, underlies both macrocystic and microcystic LMs in human. Using a mouse model of PIK3CAH1047R-driven LM, we demonstrate that both types of malformations arise due to lymphatic endothelial cell (LEC)-autonomous defects, with the developmental timing of p110α activation determining the LM subtype. In the postnatal vasculature, PIK3CAH1047R promotes LEC migration and lymphatic hypersprouting, leading to microcystic LMs that grow progressively in a vascular endothelial growth factor C (VEGF-C)-dependent manner. Combined inhibition of VEGF-C and the PI3K downstream target mTOR using Rapamycin, but neither treatment alone, promotes regression of lesions. The best therapeutic outcome for LM is thus achieved by co-inhibition of the upstream VEGF-C/VEGFR3 and the downstream PI3K/mTOR pathways.
    DOI:  https://doi.org/10.1038/s41467-020-16496-y
  3. Cancer Discov. 2020 Jun 08. pii: CD-19-1262. [Epub ahead of print]
      Inactivation of the tumor suppressor lipid phosphatase INPP4B is common in triple negative breast cancer (TNBC). We generated a genetically-engineered TNBC mouse model deficient in INPP4B. We found a dose-dependent increase in tumor incidence in INPP4B homozygous and heterozygous knockout mice compared to wild-type, supporting a role for INPP4B as a tumor suppressor in TNBC. Tumors derived from INPP4B knockout mice are enriched for AKT and MEK gene signatures. Consequently, mice with INPP4B deficiency are more sensitive to PI3K or MEK inhibitors, compared to wild-type mice. Mechanistically, we found that INPP4B deficiency increases PI(3,4)P2 levels in endocytic vesicles but not at the plasma membrane. Moreover, INPP4B loss delays degradation of EGFR and MET, while promoting recycling of RTKs, thus enhancing the duration and amplitude of signaling output upon growth factor stimulation. Therefore, INPP4B inactivation in TNBC promotes tumorigenesis by modulating RTK recycling and signaling duration.
    DOI:  https://doi.org/10.1158/2159-8290.CD-19-1262
  4. Cell Stem Cell. 2020 Jun 02. pii: S1934-5909(20)30205-8. [Epub ahead of print]
      Human skin tolerates a surprisingly high burden of oncogenic lesions. Although adult epidermis can suppress the expansion of individual mutant clones, the mechanisms behind tolerance to oncogene activation across broader regions of tissue are unclear. Here, we uncover a dynamic translational mechanism that coordinates oncogenic HRAS-induced hyperproliferation with loss of progenitor self-renewal to restrain aberrant growth and tumorigenesis. We identify translation initiator eIF2B5 as a central co-regulator of HRAS proliferation and cell fate choice. By coupling in vivo ribosome profiling with genetic screening, we provide direct evidence that oncogene-induced loss of progenitor self-renewal is driven by eIF2B5-mediated translation of ubiquitination genes. Ubiquitin ligase FBXO32 specifically inhibits epidermal renewal without affecting overall proliferation, thus restraining HRAS-driven tumorigenesis while maintaining normal tissue growth. Thus, oncogene-driven translation is not necessarily inherently tumor promoting but instead can manage widespread oncogenic stress by steering progenitor fate to prolong normal tissue growth.
    Keywords:  epidermis; fate coordination; homeostasis; oncogenic stress; oncogenic tolerance; stem cell renewal; translational regulation; tumor suppression
    DOI:  https://doi.org/10.1016/j.stem.2020.05.007
  5. Drugs Today (Barc). 2020 Jun;56(6): 357-363
      Phosphatidylinositol 3-kinase (PI3K) catalytic subunit p110α (PIK3CA) mutations occur in approximately 40% of patients with hormone receptor-positive, human epidermal growth factor receptor 2 (HER2)-negative breast cancer. Alpelisib, a selective oral inhibitor of PI3K, with inhibitory activity predominantly against PIK3CA, has shown synergistic antitumor activity with endocrine therapy against hormone receptor-positive PIK3CA-mutated breast cancer cells in preclinical and early-phase clinical trials. The combination of alpelisib with fulvestrant or an aromatase inhibitor such as letrozole is safe and effective with reversible toxicities. Although clinical activity has been observed independently of PIK3CA mutation status, clinical improvement has been mostly seen in a higher proportion of patients with PIK3CA-mutated tumors. In this review I share current data on alpelisib in breast cancer treatment.
    Keywords:  Alpelisib; Breast cancer; Phosphatidylinositol 3-kinase (PI3K) inhibitors; Solid tumors therapy; keyword
    DOI:  https://doi.org/10.1358/dot.2020.56.6.3137526
  6. Nat Commun. 2020 Jun 12. 11(1): 2995
      Adipocyte dysfunction links obesity to insulin resistance and type 2 diabetes. Adipocyte function is regulated by receptor-mediated activation of heterotrimeric G proteins. Little is known about the potential in vivo metabolic roles of Gi-type G proteins expressed by adipocytes, primarily due to the lack of suitable animal models. To address this question, we generated mice lacking functional Gi proteins selectively in adipocytes. Here we report that these mutant mice displayed significantly impaired glucose tolerance and reduced insulin sensitivity when maintained on an obesogenic diet. In contrast, using a chemogenetic strategy, we demonstrated that activation of Gi signaling selectively in adipocytes greatly improved glucose homeostasis and insulin signaling. We also elucidated the cellular mechanisms underlying the observed metabolic phenotypes. Our data support the concept that adipocyte Gi signaling is essential for maintaining euglycemia. Drug-mediated activation of adipocyte Gi signaling may prove beneficial for restoring proper glucose homeostasis in type 2 diabetes.
    DOI:  https://doi.org/10.1038/s41467-020-16756-x
  7. Cancers (Basel). 2020 Jun 10. pii: E1516. [Epub ahead of print]12(6):
      BRAF inhibitors can delay the progression of metastatic melanoma, but resistance usually emerges, leading to relapse. Drugs simultaneously targeting two or more pathways essential for cancer growth could slow or prevent the development of resistant clones. Here, we identified pyridinyl imidazole compounds SB202190, SB203580, and SB590885 as dual inhibitors of critical proliferative pathways in human melanoma cells bearing the V600E activating mutation of BRAF kinase. We found that the drugs simultaneously disrupt the BRAF V600E-driven extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) activity and the mechanistic target of rapamycin complex 1 (mTORC1) signaling in melanoma cells. Pyridinyl imidazole compounds directly inhibit BRAF V600E kinase. Moreover, they interfere with the endolysosomal compartment, promoting the accumulation of large acidic vacuole-like vesicles and dynamic changes in mTOR signaling. A transient increase in mTORC1 activity is followed by the enrichment of the Ragulator complex protein p18/LAMTOR1 at contact sites of large vesicles and delocalization of mTOR from the lysosomes. The induced disruption of the endolysosomal pathway not only disrupts mTORC1 signaling, but also renders melanoma cells sensitive to endoplasmic reticulum (ER) stress. Our findings identify new activities of pharmacologically relevant small molecule compounds and provide a biological rationale for the development of anti-melanoma therapeutics based on the pyridinyl imidazole core.
    Keywords:  BRAF V600E; BRAF inhibitor; ER stress; endosome; lysosome; mTORC1; melanoma; pyridinyl imidazole; small molecule drug
    DOI:  https://doi.org/10.3390/cancers12061516
  8. JCI Insight. 2020 Jun 09. pii: 129070. [Epub ahead of print]
      Apelin is a well-established mediator of survival and mitogenic signalling through apelin receptor (Aplnr) and have been implicated in various cancers, however little is known regarding Elabela (ELA/APELA) signalling, also mediated by Aplnr, and its role and the role of the conversion of its precursor proELA into mature ELA in cancer are unknown. Here we identify a function of mTORC1 signalling as an essential mediator of ELA that represses kidney tumour cells growth, migration and survival. Moreover, sunitinib and ELA show synergistic effect in repressing tumour growth and angiogenesis in mice. The use of site directed mutagenesis and pharmacologic experiments provide evidence that the alteration of the cleavage site of proELA by Furin induced improved ELA anti-tumorigenic activity. Finally, cohort of tumours and public data sets revealed that ELA is only repressed in the main human kidney cancer subtypes namely clear cell, papillary, and chromophobe renal cell carcinoma. While Aplnr is expressed by various kidney cells, ELA is generally expressed by epithelial cells. Collectively, these results show the tumour-suppressive role of mTORC1 signalling mediated by ELA and establish the potential use of ELA or derivatives in kidney cancers treatment.
    Keywords:  Calcium; Nephrology
    DOI:  https://doi.org/10.1172/jci.insight.129070
  9. Biochem J. 2020 Jun 08. pii: BCJ20200402. [Epub ahead of print]
      Insulin resistance is one major features of type 2 diabetes mellitus (T2DM). Deuterohemin-βAla-His-Thr-Val-Glu-Lys (DhHP-6), a novel microperoxidase mimetic designed and synthesized based on microperoxidase 11 (MP-11), can scavenge reactive oxygen species (ROS) in vivo. In our previous studies, we showed that oral DhHP-6 could reduce blood glucose and improve insulin resistance. To investigate the mechanisms of how DhHP-6 ameliorates oxidative stress and insulin resistance, we established T2DM mouse models and glucosamine-induced HepG2 cell insulin resistance models. The results suggested that DhHP-6 decreased blood glucose, increased anti-oxidant enzyme activity, and inhibited glycogen synthesis in T2DM mice. In addition, DhHP-6 improved insulin resistance by activating phosphatidylinositol 3-kinase (PI3K)/AKT, and AMP-activated protein kinase (AMPK) pathway in T2DM mice. Further more, DhHP-6 also activated PI3K/AKT and AMPK pathway in glucosamine-induced HepG2 cells. However, LY294002 did not completely inhibit AKT phosphorylation, and partially inhibited AMPK phosphorylation, whilst compound C only partially reduced AMPK phosphorylation, and also partially inhibited AKT phosphorylation, suggesting that AKT and AMPK interact to improve insulin resistance. Thus, these data suggest that DhHP-6 attenuates insulin resistance via the PI3K/AKT and AMPK pathway.
    Keywords:  AMPK; PI3K/AKT; deuterohemin-βAla-His-Thr-Val-Glu-Lys; insulin resistance; type 2 diabetes mellitus
    DOI:  https://doi.org/10.1042/BCJ20200402
  10. Cell Rep. 2020 Jun 09. pii: S2211-1247(20)30733-6. [Epub ahead of print]31(10): 107753
      Epigenomic alterations can give rise to various tumor-promoting properties, including therapeutic resistance of cancer cells. Here, we identify an lncRNA, BDNF-AS, whose overexpression is specifically driven by a MEF2A-regulated enhancer in endocrine-resistant and triple-negative breast cancer (TNBC). High levels of BDNF-AS in breast cancer tissues not only feature endocrine resistance in hormone receptor (HR)-positive patients but also correlate with poor outcomes in both HR-positive and TNBC patients. Mechanistically, BDNF-AS acts as a molecular scaffold to promote RNH1 protein degradation via TRIM21-mediated ubiquitination of RNH1 at K225. Subsequently, BDNF-AS abolishes RNH1-regulated and RISC-mediated mTOR mRNA decay, therefore sustaining the activation of mTOR signaling. Importantly, mTOR inhibitor, but not PI3K inhibitor, could reverse tamoxifen resistance induced by the overexpression of BDNF-AS. These results point toward a master regulatory role of an enhancer-activated cascade of BDNF-AS/RNH1/TRIM21/mTOR in endocrine resistance and malignant progression of breast cancer.
    Keywords:  BDNF-AS; RNH1; TRIM21; breast cancer; endocrine resistance; mTOR
    DOI:  https://doi.org/10.1016/j.celrep.2020.107753
  11. PLoS Biol. 2020 Jun;18(6): e3000718
      Autophagy is an intracellular degradation pathway targeting organelles and macromolecules, thereby regulating various cellular functions. Phosphorylation is a key posttranscriptional protein modification implicated in the regulation of biological function including autophagy. Under asynchronous conditions, autophagy activity is predominantly suppressed by mechanistic target of rapamycin (mTOR) kinase, but whether autophagy-related genes (ATG) proteins are phosphorylated differentially throughout the sequential phases of the cell cycle remains unclear. In this issue, Li and colleagues report that cyclin-dependent kinase 1 (CDK1) phosphorylates the ULK complex during mitosis. This phosphorylation induces autophagy and, surprisingly, is shown to drive cell cycle progression. This work reveals a yet-unappreciated role for autophagy in cell cycle progression and enhances our understanding of the specific phase-dependent autophagy regulation during cellular growth and proliferation.
    DOI:  https://doi.org/10.1371/journal.pbio.3000718
  12. Elife. 2020 Jun 11. pii: e53159. [Epub ahead of print]9
      The transcription factor FoxO has been shown to block proliferation and progression in mTORC1-driven tumorigenesis but the picture of the relevant FoxO target genes remains incomplete. Here, we employed RNA-seq profiling on single clones isolated using laser capture microdissection from Drosophila larval eye imaginal discs to identify FoxO targets that restrict the proliferation of Tsc1-deficient cells under nutrient restriction (NR). Transcriptomics analysis revealed downregulation of endoplasmic reticulum-associated protein degradation pathway components upon foxo knockdown. Induction of ER stress pharmacologically or by suppression of other ER stress response pathway components led to an enhanced overgrowth of Tsc1 knockdown tissue. Increase of ER stress in Tsc1 loss-of-function cells upon foxo knockdown was also confirmed by elevated expression levels of known ER stress markers. These results highlight the role of FoxO in limiting ER stress to regulate Tsc1 mutant overgrowth.
    Keywords:  D. melanogaster; ER stress; FoxO; Tsc1; cancer biology; genetics; genomics; laser capture microdissection
    DOI:  https://doi.org/10.7554/eLife.53159
  13. Oncotarget. 2020 May 26. 11(21): 1971-1987
      The cytosolic branched chain aminotransferase (BCATc) protein has been found to be highly expressed in breast cancer subtypes, including triple negative breast cancer (TNBC), compared with normal breast tissue. The catabolism of branched-chain amino acids (BCAAs) by BCATc leads to the production of glutamate and key metabolites which further drive the TCA cycle, important for cellular metabolism and growth. Upregulation of BCATc has been associated with increased cell proliferation, cell cycle progression and metastasis in several malignancies including breast, gliomas, ovarian and colorectal cancer but the underlying mechanisms are unclear. As nutrient levels of BCAAs, substrates of BCATc, regulate the PI3K/Akt pathway we hypothesized that increased expression of BCATc would contribute to tumour cell growth through upregulation of the insulin/IGF-1 signalling pathway. This pathway is known to potentiate proliferation and metastasis of malignant cells through the activation of PI3K/Akt and the RAS/ERK signalling cascades. Here we show that knockdown of BCATc significantly reduced insulin and IGF-1-mediated proliferation, migration and invasion of TNBC cells. An analysis of this pathway showed that when overexpressed BCATc regulates proliferation through the PI3K/Akt axis, whilst simultaneously attenuating the Ras/Erk pathway indicating that BCATc acts as a conduit between these two pathways. This ultimately led to an increase in FOXO3a, a key regulator of cell proliferation and Nrf2, which mediates redox homeostasis. Together this data indicates that BCATc regulates TNBC cell proliferation, migration and invasion through the IGF-1/insulin PI3K/Akt pathway, culminating in the upregulation of FOXO3a and Nrf2, pointing to a novel therapeutic target for breast cancer treatment.
    Keywords:  BCAT; ERK; PI3K-AKT; breast cancer
    DOI:  https://doi.org/10.18632/oncotarget.27607
  14. Biochem Pharmacol. 2020 Jun 09. pii: S0006-2952(20)30324-5. [Epub ahead of print] 114088
      Phagocytes, especially neutrophils, can produce reactive oxygen species (ROS), through the activation of the NADPH oxidase (NOX2). Although this enzyme is crucial for host-pathogen defense, ROS production by neutrophils can be harmful in several pathologies such as cardiovascular diseases or chronic pulmonary diseases. The ROS production by NOX2 involves the assembly of the cytosolic subunits (p67phox, p47phox, and p40phox) and Rac with the membrane subunits (gp91phox and p22phox). Many studies are devoted to the activation of NOX2. However, the mechanisms that cause NADPH oxidase deactivation and thus terminate ROS production are not well known. Here we investigated the ability of class I phosphoinositide 3-kinases (PI3Ks) to sustain NADPH oxidase activation. The NADPH oxidase activation was triggered by seeding neutrophil-like PLB-985 cells, or human neutrophils on immobilized fibrinogen. Adhesion of the neutrophils, mediated by β2 integrins, induced activation of the NADPH oxidase and translocation of the cytosolic subunits at the plasma membrane. Inhibition of class I PI3Ks, and especially PI3Kβ, terminated ROS production. This deactivation of NOX2 is due to the release of the cytosolic subunits, p67phox and p47phox from the plasma membrane. Overexpression of an active form of Rac 1 did not prevent the drop of ROS production upon inhibition of class I PI3Ks. Moreover, the phosphorylation of p47phox at S328, a potential target of kinases activated by the PI3K pathway, was unchanged. Our results indicate that the experimental downregulation of class I PI3K products triggers the plasma membrane NADPH oxidase deactivation. Release of p47phox from the plasma membrane may involve its PX domains that bind PI3K products.
    Keywords:  NADPH oxidase; ROS; imaging; integrin; phosphoinositide 3-kinases
    DOI:  https://doi.org/10.1016/j.bcp.2020.114088