bims-pideca Biomed News
on Class IA PI3K signalling in development and cancer
Issue of 2019–08–25
twenty-one papers selected by
Ralitsa Radostinova Madsen, University College London



  1. Mol Cell. 2019 Aug 22. pii: S1097-2765(19)30553-2. [Epub ahead of print]75(4): 807-822.e8
      mTORC2 controls glucose and lipid metabolism, but the mechanisms are unclear. Here, we show that conditionally deleting the essential mTORC2 subunit Rictor in murine brown adipocytes inhibits de novo lipid synthesis, promotes lipid catabolism and thermogenesis, and protects against diet-induced obesity and hepatic steatosis. AKT kinases are the canonical mTORC2 substrates; however, deleting Rictor in brown adipocytes appears to drive lipid catabolism by promoting FoxO1 deacetylation independently of AKT, and in a pathway distinct from its positive role in anabolic lipid synthesis. This facilitates FoxO1 nuclear retention, enhances lipid uptake and lipolysis, and potentiates UCP1 expression. We provide evidence that SIRT6 is the FoxO1 deacetylase suppressed by mTORC2 and show an endogenous interaction between SIRT6 and mTORC2 in both mouse and human cells. Our findings suggest a new paradigm of mTORC2 function filling an important gap in our understanding of this more mysterious mTOR complex.
    Keywords:  ATGL; FoxO1; Rictor; Sirt6; UCP1; acetylation; adipocyte; brown adipose tissue; brown fat; lipid; mTOR; mTORC2; metabolism; signaling
    DOI:  https://doi.org/10.1016/j.molcel.2019.07.023
  2. Mol Metab. 2019 Aug 05. pii: S2212-8778(19)30586-1. [Epub ahead of print]
       OBJECTIVE: Skeletal muscle insulin signaling is a major determinant of muscle growth and glucose homeostasis. Protein kinase B/Akt plays a prominent role in mediating many of the metabolic effects of insulin. Mice and humans harboring systemic loss-of-function mutations in Akt2, the most abundant Akt isoform in metabolic tissues, are glucose intolerant and insulin resistant. Since the skeletal muscle accounts for a significant amount of postprandial glucose disposal, a popular hypothesis in the diabetes field suggests that a reduction in Akt, specifically in skeletal muscle, leads to systemic glucose intolerance and insulin resistance. Despite this common belief, the specific role of skeletal muscle Akt in muscle growth and insulin sensitivity remains undefined.
    METHODS: We generated multiple mouse models of skeletal muscle Akt deficiency to evaluate the role of muscle Akt signaling in vivo. The effects of these genetic perturbations on muscle mass, glucose homeostasis and insulin sensitivity were assessed using both in vivo and ex vivo assays.
    RESULTS: Surprisingly, mice lacking Akt2 alone in skeletal muscle displayed normal skeletal muscle insulin signaling, glucose tolerance, and insulin sensitivity despite a dramatic reduction in phosphorylated Akt. In contrast, deletion of both Akt isoforms (M-AktDKO) prevented downstream signaling and resulted in muscle atrophy. Despite the absence of Akt signaling, in vivo and ex vivo insulin-stimulated glucose uptake were normal in M-AktDKO mice. Similar effects on insulin sensitivity were observed in mice with prolonged deletion (4 weeks) of both skeletal muscle Akt isoforms selectively in adulthood. Conversely, short term deletion (2 weeks) of skeletal muscle specific Akt in adult muscles impaired insulin tolerance paralleling the effect observed by acute pharmacological inhibition of Akt in vitro. Mechanistically, chronic ablation of Akt induced mitochondrial dysfunction and activation of AMPK, which was required for insulin-stimulated glucose uptake in the absence of Akt.
    CONCLUSIONS: Together, these data indicate that chronic reduction in Akt activity alone in skeletal muscle is not sufficient to induce insulin resistance or prevent glucose uptake in all conditions. Therefore, since insulin-stimulated glucose disposal in skeletal muscle is markedly impaired in insulin-resistant states, we hypothesize that alterations in signaling molecules in addition to skeletal muscle Akt are necessary to perturb glucose tolerance and insulin sensitivity in vivo.
    Keywords:  Akt; Glucose homeostasis; Glucose uptake; Insulin signaling; Mitochondria dysfunction; Muscle metabolism
    DOI:  https://doi.org/10.1016/j.molmet.2019.08.001
  3. Front Neurosci. 2019 ;13 801
      Almost 50 million people in the world are affected by dementia; the most prevalent form of which is Alzheimer's disease (AD). Although aging is considered to be the main risk factor for AD, growing evidence from epidemiological studies suggests that type 2 diabetes mellitus (T2DM) increases the risk of dementia including AD. Defective brain insulin signaling has been suggested as an early event in AD and other tauopathies but the mechanisms that link these diseases are largely unknown. Tau hyperphosphorylation is a hallmark of neurofibrillary pathology and insulin resistance increases the number of neuritic plaques particularly in AD. Utilizing a combination of our Drosophila models of tauopathy (expressing the 2N4R-Tau) and neuroblastoma cells, we have attempted to decipher the pathways downstream of the insulin signaling cascade that lead to tau hyperphosphorylation, aggregation and autophagic defects. Using cell-based, genetic, and biochemical approaches we have demonstrated that tau phosphorylation at AT8 and PHF1 residues is enhanced in an insulin-resistant environment. We also show that insulin-induced changes in total and phospho-tau are mediated by the crosstalk of AKT, glycogen synthase kinase-3β, and extracellular regulating kinase located downstream of the insulin receptor pathway. Finally, we demonstrate a significant change in the levels of the key proteins in the mammalian target of rapamycin/autophagy pathway, implying an increased impairment of aggregated protein clearance in our transgenic Drosophila models and cultured neuroblastoma cells.
    Keywords:  Alzheimer’s disease; autophagy; tau aggregation; tau hyper-phosphorylation; type 2 diabetes
    DOI:  https://doi.org/10.3389/fnins.2019.00801
  4. Biomolecules. 2019 Aug 22. pii: E402. [Epub ahead of print]9(9):
      The hyper-activation of the phosphoinositide (PI) 3-kinase signaling pathway is a hallmark of many cancers and overgrowth syndromes, and as a result, there has been intense interest in the development of drugs that target the various isoforms of PI 3-kinase. Given the key role PI 3-kinases play in many normal cell functions, there is significant potential for the disruption of essential cellular functions by PI 3-kinase inhibitors in normal tissues; so-called on-target drug toxicity. It is, therefore, no surprise that progress within the clinical development of PI 3-kinase inhibitors as single-agent anti-cancer therapies has been slowed by the difficulty of identifying a therapeutic window. The aim of this review is to place the cellular, tissue and whole-body effects of PI 3-kinase inhibition in the context of understanding the potential for dose limiting on-target toxicities and to introduce possible strategies to overcome these.
    Keywords:  PI 3-kinase inhibition; cancer; cell signaling; metabolism; on-target drug toxicity
    DOI:  https://doi.org/10.3390/biom9090402
  5. Clin Cancer Res. 2019 Aug 22. pii: clincanres.0508.2019. [Epub ahead of print]
       BACKGROUND: The strategy of combining endocrine therapy with PI3K-mTOR inhibition has shown promise in oestrogen-receptor (ER)-positive breast cancer, but new agents and combinations with a better therapeutic index are urgently needed. Taselisib is a potent, selective, beta-isoform sparing PI3 kinase inhibitor.
    PATIENTS AND METHODS: 30 patients with ER-positive, metastatic breast cancer who had failed prior endocrine therapy were treated with escalating doses of taselisib (2 or 4 mg in an intermittent or continuous schedule) combined with tamoxifen 20mg once daily in this phase 1b study using a 'rolling six' design.
    RESULTS: Taselisib combined with tamoxifen was generally well tolerated, with treatment-emergent adverse events as expected for this class of drugs, including diarrhea (13 patients, 43%), mucositis (10 patients, 33%) and hyperglycemia (8 patients, 27%). No dose-limiting toxicities were observed. Objective responses were seen in 6 out of 25 patients with RECIST-measurable disease (ORR 24%). Median time to disease progression was 3.7 months. 12 out of 30 patients (40%) had disease control for 6 months or more.Circulating tumor (ct)DNA studies using next-generation tagged amplicon sequencing identified early indications of treatment response and mechanistically-relevant correlates of clinical drug resistance (eg. mutations in KRAS, ERBB2) in some patients.
    CONCLUSIONS: Taselisib can be safely combined with tamoxifen at the recommended phase 2 dose of 4mg given once daily on a continuous schedule. Preliminary evidence of anti-tumor activity was seen in both PIK3CAmutant and wild-type cancers. The randomized phase 2 part of POSEIDON (testing tamoxifen plus taselisib or placebo) is currently recruiting.
    DOI:  https://doi.org/10.1158/1078-0432.CCR-19-0508
  6. Front Oncol. 2019 ;9 686
      Dependence on the glutamine pathway is increased in advanced breast cancer cell models and tumors regardless of hormone receptor status or function. While 70% of breast cancers are estrogen receptor positive (ER+) and depend on estrogen signaling for growth, advanced ER+ breast cancers grow independent of estrogen. Cellular changes in amino acids such as glutamine are sensed by the mammalian target of rapamycin (mTOR) complex, mTORC1, which is often deregulated in ER+ advanced breast cancer. Inhibitor of mTOR, such as everolimus, has shown modest clinical activity in ER+ breast cancers when given with an antiestrogen. Here we show that breast cancer cell models that are estrogen independent and antiestrogen resistant are more dependent on glutamine for growth compared with their sensitive parental cell lines. Co-treatment of CB-839, an inhibitor of GLS, an enzyme that converts glutamine to glutamate, and everolimus interrupts the growth of these endocrine resistant xenografts. Using human tumor microarrays, we show that GLS is significantly higher in human breast cancer tumors with increased tumor grade, stage, ER-negative and progesterone receptor (PR) negative status. Moreover, GLS levels were significantly higher in breast tumors from African-American women compared with Caucasian women regardless of ER or PR status. Among patients treated with endocrine therapy, high GLS expression was associated with decreased disease free survival (DFS) from a multivariable model with GLS expression treated as dichotomous. Collectively, these findings suggest a complex biology for glutamine metabolism in driving breast cancer growth. Moreover, targeting GLS and mTOR in advanced breast cancer may be a novel therapeutic approach in advanced ER+ breast cancer.
    Keywords:  CB-839; breast cancer; endocrine resistance; everolimus; glutamine metabolism; mTOR
    DOI:  https://doi.org/10.3389/fonc.2019.00686
  7. Cold Spring Harb Perspect Med. 2019 Aug 19. pii: a036780. [Epub ahead of print]
      Phosphatase and tensin homolog (PTEN) is a classical tumor suppressor that antagonizes phosphatidylinositol 3-phosphate kinase (PI3K)/AKT signaling. Although there is a strong association of PTEN germline mutations with cancer syndromes, they have also been described in a subset of patients with autism spectrum disorders with macrocephaly characterized by impairments in social interactions and communication, repetitive behavior and, occasionally, epilepsy. To investigate PTEN's role during neurodevelopment and its implication for autism, several conditional Pten knockout mouse models have been generated. These models are valuable tools to understand PTEN's spatiotemporal roles during neurodevelopment. In this review, we will highlight the anatomical and phenotypic results from animal studies and link them to cellular and molecular findings.
    DOI:  https://doi.org/10.1101/cshperspect.a036780
  8. Annu Rev Med. 2019 Aug 21.
      PTEN is a tumor suppressor gene that classically dampens the PI3K/AKT/mTOR growth-promoting signaling cascade. PTEN dysfunction causes dysregulation of this and other pathways, resulting in overgrowth. Cowden syndrome, a hereditary cancer predisposition and overgrowth disorder, was the first Mendelian condition associated with germline PTEN mutations. Since then, significant advances by the research and medical communities have elucidated how clinical phenotypic manifestations result from the underlying germline PTEN mutations. With time, it became evident that PTEN mutations can result in a broad phenotypic spectrum, causing seemingly disparate disorders from cancer to autism. Hence, the umbrella term of PTEN hamartoma tumor syndrome (PHTS) was coined. Timely diagnosis and understanding the natural history of PHTS are vital because early recognition enables gene-informed management, particularly as related to high-risk cancer surveillance and addressing the neurodevelopmental symptoms. Expected final online publication date for the Annual Review of Medicine, Volume 71 is January 27, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    DOI:  https://doi.org/10.1146/annurev-med-052218-125823
  9. Autism Res. 2019 Aug 23.
      Heterozygous mutations in PTEN, which encodes a negative regulator of the mTOR and β-catenin signaling pathways, cause macrocephaly/autism syndrome. However, the neurobiological substrates of the core symptoms of this syndrome are poorly understood. Here, we investigate the relationship between cerebral cortical overgrowth and social behavior deficits in conditional Pten heterozygous female mice (Pten cHet) using Emx1-Cre, which is expressed in cortical pyramidal neurons and a subset of glia. We found that conditional heterozygous mutation of Ctnnb1 (encoding β-catenin) suppresses Pten cHet cortical overgrowth, but not social behavioral deficits, whereas conditional heterozygous mutation of Mtor suppresses social behavioral deficits, but not cortical overgrowth. Neuronal activity in response to social cues and excitatory synapse markers are elevated in the medial prefrontal cortex (mPFC) of Pten cHet mice, and heterozygous mutation in Mtor, but not Ctnnb1, rescues these phenotypes. These findings indicate that macroscale cerebral cortical overgrowth and social behavioral phenotypes caused by Pten haploinsufficiency can be dissociated based on responsiveness to genetic suppression of Ctnnb1 or Mtor. Furthermore, neuronal connectivity appears to be one potential substrate for mTOR-mediated suppression of social behavioral deficits in Pten haploinsufficient mice. Autism Res 2019, 00: 1-10. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: A subgroup of individuals with autism display overgrowth of the head and the brain during development. Using a mouse model of an autism risk gene, Pten, that displays both brain overgrowth and social behavioral deficits, we show here that that these two symptoms can be dissociated. Reversal of social behavioral deficits in this model is associated with rescue of abnormal synaptic markers and neuronal activity.
    Keywords:  PTEN; macrocephaly; network activity; social behavior; synapses
    DOI:  https://doi.org/10.1002/aur.2186
  10. Ther Clin Risk Manag. 2019 ;15 951-955
      Up to 90% of patients with tuberous sclerosis complex (TSC) have epilepsy, and in over half of patients seizure control cannot be achieved by regular antiepileptic drugs. The underlying problem is mTOR hyperactivation due to loss of function of the TSC proteins. Treatment with everolimus, an mTOR inhibitor, has been shown to be of great benefit to TSC patients, both in reducing tumor growth and as a treatment for intractable epilepsy. Up to 40% of TSC patients with intractable epilepsy show a clinically relevant seizure response to everolimus. It has not yet fully lived up to its promise as a disease-modifying drug, however, as half of TSC patients with intractable epilepsy do not show a clinically relevant seizure frequency reduction. There is no evidence yet of a positive effect on the cognitive and neuropsychiatric deficits in TSC patients. In preclinical studies, mTOR inhibition can rescue abnormal neuronal migration and synapse formation that is caused by mTOR hyperactivation. These studies show a critical time window that suggests that mTOR inhibition may be most beneficial in young children. The trials done so far have not studied treatment in children under 2 years of age, although case series suggest that the safety profile is similar to that in older children. Further studies into the optimal time window, dosing schedules and possibly combination with other drugs may further improve the benefit of everolimus for TSC patients.
    Keywords:  epilepsy; epileptogenesis; mTOR
    DOI:  https://doi.org/10.2147/TCRM.S145630
  11. Genes Nutr. 2019 ;14 25
      Decline of cellular functions especially cognitive is a major deficit that arises with age in humans. Harnessing the strengths of small and genetic tractable model systems has revealed key conserved regulatory biochemical and signaling pathways that control aging. Here, we review some of the key signaling and biochemical pathways that coordinate aging processes with special emphasis on Caenorhabditis elegans as a model system and discuss how nutrients and metabolites can regulate lifespan by coordinating signaling and epigenetic programs. We focus on central nutrient-sensing pathways such as mTOR and insulin/insulin-like growth factor signaling and key transcription factors including the conserved basic helix-loop-helix transcription factor HLH-30/TFEB.
    Keywords:  Aging; Autophagy; Caenorhabditis elegans; Dietary restriction; Epigenetics; HLH-30/TFEB; Longevity; Metabolism
    DOI:  https://doi.org/10.1186/s12263-019-0650-x
  12. PLoS Biol. 2019 Aug 21. 17(8): e3000420
      Dendritic cells (DCs) play pivotal roles in T-cell homeostasis and activation, and metabolic programing has been recently linked to DC development and function. However, the metabolic underpinnings corresponding to distinct DC functions remain largely unresolved. Here, we demonstrate a special metabolic-epigenetic coupling mechanism orchestrated by tuberous sclerosis complex subunit 1 (TSC1)-mechanistic target of rapamycin (mTOR) for homeostatic DC function. Specific ablation of Tsc1 in the DC compartment (Tsc1DC-KO) largely preserved DC development but led to pronounced reduction in naïve and memory-phenotype cluster of differentiation (CD)8+ T cells, a defect fully rescued by concomitant ablation of mTor or regulatory associated protein of MTOR, complex 1 (Rptor) in DCs. Moreover, Tsc1DC-KO mice were unable to launch efficient antigen-specific CD8+ T effector responses required for containing Listeria monocytogenes and B16 melanomas. Mechanistically, our data suggest that the steady-state DCs tend to tune down de novo fatty acid synthesis and divert acetyl-coenzyme A (acetyl-CoA) for histone acetylation, a process critically controlled by TSC1-mTOR. Correspondingly, TSC1 deficiency elevated acetyl-CoA carboxylase 1 (ACC1) expression and fatty acid synthesis, leading to impaired epigenetic imprinting on selective genes such as major histocompatibility complex (MHC)-I and interleukin (IL)-7. Remarkably, tempering ACC1 activity was able to divert cytosolic acetyl-CoA for histone acetylation and restore the gene expression program compromised by TSC1 deficiency. Taken together, our results uncover a crucial role for TSC1-mTOR in metabolic programing of the homeostatic DCs for T-cell homeostasis and implicate metabolic-coupled epigenetic imprinting as a paradigm for DC specification.
    DOI:  https://doi.org/10.1371/journal.pbio.3000420
  13. J Cell Biol. 2019 Aug 20. pii: jcb.201812110. [Epub ahead of print]
      Retromer is an evolutionarily conserved multiprotein complex that orchestrates the endocytic recycling of integral membrane proteins. Here, we demonstrate that retromer is also required to maintain lysosomal amino acid signaling through mTORC1 across species. Without retromer, amino acids no longer stimulate mTORC1 translocation to the lysosomal membrane, which leads to a loss of mTORC1 activity and increased induction of autophagy. Mechanistically, we show that its effect on mTORC1 activity is not linked to retromer's role in the recycling of transmembrane proteins. Instead, retromer cooperates with the RAB7-GAP TBC1D5 to restrict late endosomal RAB7 into microdomains that are spatially separated from the amino acid-sensing domains. Upon loss of retromer, RAB7 expands into the ragulator-decorated amino acid-sensing domains and interferes with RAG-GTPase and mTORC1 recruitment. Depletion of retromer in Caenorhabditis elegans reduces mTORC1 signaling and extends the lifespan of the worms, confirming an evolutionarily conserved and unexpected role for retromer in the regulation of mTORC1 activity and longevity.
    DOI:  https://doi.org/10.1083/jcb.201812110
  14. J Immunol. 2019 Aug 19. pii: ji1900443. [Epub ahead of print]
      Neutrophils are abundant circulating leukocytes that are rapidly recruited to sites of inflammation in an integrin-dependent fashion. Contrasting with the well-characterized regulation of integrin activation, mechanisms regulating integrin inactivation remain largely obscure. Using mouse neutrophils, we demonstrate in this study that the GTPase activating protein ARAP3 is a critical regulator of integrin inactivation; experiments with Chinese hamster ovary cells indicate that this is not restricted to neutrophils. Specifically, ARAP3 acts in a negative feedback loop downstream of PI3K to regulate integrin inactivation. Integrin ligand binding drives the activation of PI3K and of its effectors, including ARAP3, by outside-in signaling. ARAP3, in turn, promotes localized integrin inactivation by negative inside-out signaling. This negative feedback loop reduces integrin-mediated PI3K activity, with ARAP3 effectively switching off its own activator, while promoting turnover of substrate adhesions. In vitro, ARAP3-deficient neutrophils display defective PIP3 polarization, adhesion turnover, and transendothelial migration. In vivo, ARAP3-deficient neutrophils are characterized by a neutrophil-autonomous recruitment defect to sites of inflammation.
    DOI:  https://doi.org/10.4049/jimmunol.1900443
  15. Cell Rep. 2019 Aug 20. pii: S2211-1247(19)31000-9. [Epub ahead of print]28(8): 1971-1980.e8
      Reprogrammed metabolism and cell cycle dysregulation are two cancer hallmarks. p16 is a cell cycle inhibitor and tumor suppressor that is upregulated during oncogene-induced senescence (OIS). Loss of p16 allows for uninhibited cell cycle progression, bypass of OIS, and tumorigenesis. Whether p16 loss affects pro-tumorigenic metabolism is unclear. We report that suppression of p16 plays a central role in reprogramming metabolism by increasing nucleotide synthesis. This occurs by activation of mTORC1 signaling, which directly mediates increased translation of the mRNA encoding ribose-5-phosphate isomerase A (RPIA), a pentose phosphate pathway enzyme. p16 loss correlates with activation of the mTORC1-RPIA axis in multiple cancer types. Suppression of RPIA inhibits proliferation only in p16-low cells by inducing senescence both in vitro and in vivo. These data reveal the molecular basis whereby p16 loss modulates pro-tumorigenic metabolism through mTORC1-mediated upregulation of nucleotide synthesis and reveals a metabolic vulnerability of p16-null cancer cells.
    Keywords:  BRAF; cancer metabolism; cell cycle; melanoma; nevi; pancreatic cancer; pentose phosphate pathway; ribonucleotide reductase M2; ribose-5-phosphate isomerase A; senescence
    DOI:  https://doi.org/10.1016/j.celrep.2019.07.084
  16. Elife. 2019 Aug 22. pii: e48630. [Epub ahead of print]8
      Insulin signaling controls metabolic homeostasis. Here, we report the cryo-EM structure of full-length insulin receptor (IR) and insulin complex in the active state. This structure unexpectedly reveals that maximally 4 insulins can bind the 'T'-shaped IR dimer at 4 distinct sites related by 2-fold symmetry. Insulins 1 and 1' bind to sites 1 and 1', formed by L1 of one IR protomer and α-CT and FnIII-1 of the other. Insulins 2 and 2' bind to sites 2 and 2' on FnIII-1 of each protomer. Mutagenesis and cellular assays show that both sites 1 and 2 are required for optimal insulin binding and IR activation. We further identify a homotypic FnIII-2-FnIII-2 interaction in mediating the dimerization of membrane proximal domains in the active IR dimer. Our results indicate that binding of multiple insulins at two distinct types of sites disrupts the autoinhibited apo-IR dimer and stabilizes the active dimer.
    Keywords:  human; molecular biophysics; structural biology
    DOI:  https://doi.org/10.7554/eLife.48630
  17. Am J Med Genet C Semin Med Genet. 2019 Aug 23.
      Megalencephaly (MEG) is a developmental abnormality of brain growth characterized by early onset, often progressive, brain overgrowth. Focal forms of megalencephaly associated with cortical dysplasia, such as hemimegalencephaly and focal cortical dysplasia, are common causes of focal intractable epilepsy in children. The increasing use of high throughput sequencing methods, including high depth sequencing to more accurately detect and quantify mosaic mutations, has allowed us to identify the molecular etiologies of many MEG syndromes, including most notably the PI3K-AKT-MTOR related MEG disorders. Thorough molecular and clinical characterization of affected individuals further allow us to derive preliminary genotype-phenotype correlations depending on the gene, mutation, level of mosaicism, and tissue distribution. Our review of published data on these disorders so far shows that mildly activating variants (that are typically constitutional or germline) are associated with diffuse megalencephaly with intellectual disability and/or autism spectrum disorder; moderately activating variants (that are typically high-level mosaic) are associated with megalencephaly with pigmentary abnormalities of the skin; and strongly activating variants (that are usually very low-level mosaic) are associated with focal brain malformations including hemimegalencephaly and focal cortical dysplasia. Accurate molecular diagnosis of these disorders is undoubtedly crucial to more optimally treat children with these disorders using PI3K-AKT-MTOR pathway inhibitors.
    Keywords:  AKT3; MTOR; PIK3CA; PIK3R2; megalencephaly
    DOI:  https://doi.org/10.1002/ajmg.c.31736
  18. Diabetes. 2019 Aug 22. pii: db190608. [Epub ahead of print]
      Disruption of the adaptor protein SH2B1 is associated with severe obesity, insulin resistance and neurobehavioral abnormalities in mice and humans. Here we identify 15 SH2B1 mutations in severely obese children. Four obesity-associated human SH2B1 mutations lie in the Pleckstrin Homology (PH) domain, suggesting that the PH domain is essential for SH2B1's function. We generated a mouse model of a human variant in this domain (P322S). P322S/P332S mice exhibited substantial prenatal lethality. Examination of the P322S/+ metabolic phenotype revealed late-onset glucose intolerance. To circumvent P322S/P322S lethality, mice containing a 2-amino acid deletion within the SH2B1 PH domain (ΔP317, R318; ΔPR) were studied. Mice homozygous for ΔPR were born at the expected Mendelian ratio and exhibited obesity plus insulin resistance and glucose intolerance beyond that attributable to their increased adiposity. These studies demonstrate that the PH domain plays a crucial role in SH2B1 control of energy balance and glucose homeostasis.
    DOI:  https://doi.org/10.2337/db19-0608
  19. Acta Neuropathol. 2019 Aug 23.
      Genetic malformations of cortical development (MCDs), such as mild MCDs (mMCD), focal cortical dysplasia (FCD), and hemimegalencephaly (HME), are major causes of severe pediatric refractory epilepsies subjected to neurosurgery. FCD2 are characterized by neuropathological hallmarks that include enlarged dysmorphic neurons (DNs) and balloon cells (BCs). Here, we provide a comprehensive assessment of the contribution of germline and somatic variants in a large cohort of surgical MCD cases. We enrolled in a monocentric study 80 children with drug-resistant epilepsy and a postsurgical neuropathological diagnosis of mMCD, FCD1, FCD2, or HME. We performed targeted gene sequencing ( ≥ 2000X read depth) on matched blood-brain samples to search for low-allele frequency variants in mTOR pathway and FCD genes. We were able to elucidate 29% of mMCD/FCD1 patients and 63% of FCD2/HME patients. Somatic loss-of-function variants in the N-glycosylation pathway-associated SLC35A2 gene were found in mMCD/FCD1 cases. Somatic gain-of-function variants in MTOR and its activators (AKT3, PIK3CA, RHEB), as well as germline, somatic and two-hit loss-of-function variants in its repressors (DEPDC5, TSC1, TSC2) were found exclusively in FCD2/HME cases. We show that panel-negative FCD2 cases display strong pS6-immunostaining, stressing that all FCD2 are mTORopathies. Analysis of microdissected cells demonstrated that DNs and BCs carry the pathogenic variants. We further observed a correlation between the density of pathological cells and the variant-detection likelihood. Single-cell microdissection followed by sequencing of enriched pools of DNs unveiled a somatic second-hit loss-of-heterozygosity in a DEPDC5 germline case. In conclusion, this study indicates that mMCD/FCD1 and FCD2/HME are two distinct genetic entities: while all FCD2/HME are mosaic mTORopathies, mMCD/FCD1 are not caused by mTOR-pathway-hyperactivating variants, and ~ 30% of the cases are related to glycosylation defects. We provide a framework for efficient genetic testing in FCD/HME, linking neuropathology to genetic findings and emphasizing the usefulness of molecular evaluation in the pediatric epileptic neurosurgical population.
    Keywords:  Brain mosaicism; Epilepsy-associated focal cortical dysplasia; Neurogenetics; Somatic variant; mTOR pathway
    DOI:  https://doi.org/10.1007/s00401-019-02061-5
  20. PLoS One. 2019 ;14(8): e0221482
      There have been increasing number of reports of SZT2-related neurological diseases, the main symptoms of which are epilepsy, developmental delay, macrocephaly and a dysmorphic corpus callosum. SZT2 functions as a regulator of mechanistic target of rapamycin complex 1 (mTORC1) signaling in cultured human cell lines and mouse tissues. However, it remains to be determined whether mutations in SZT2 in human patients alter mTORC1 signaling. In this study, we aimed to investigate the functional consequence of biallelic SZT2 variants in Epstein-Barr virus-induced lymphoblastoid cell lines (LCLs) established from two patients with a typical SZT2-related neurodevelopmental disease. Increased phosphorylation of S6 kinase and S6 was identified in patient-derived cell lines under amino acid-starved condition, suggestive of constitutive hyperactivation of mTORC1 signaling. This result was validated by constitutive lysosomal localization of mTOR in patients' LCLs. Furthermore, patients' LCLs display an excessive response to slight amino acid stimulation. Our data suggest the loss-of-function nature of SZT2 mutations in the patients, and consequent hyperactivation of mTORC1 signaling in response to both amino acid starvation and stimulation in their LCLs. By these functional analyses, the pathogenicity of newly identified SZT2 variants can be determined, allowing for more detailed characterization of genotype-phenotype correlations.
    DOI:  https://doi.org/10.1371/journal.pone.0221482
  21. EMBO Rep. 2019 Aug 23. e47911
      Iron overload, a common clinical occurrence, is implicated in the metabolic syndrome although the contributing pathophysiological mechanisms are not fully defined. We show that prolonged iron overload results in an autophagy defect associated with accumulation of dysfunctional autolysosomes and loss of free lysosomes in skeletal muscle. These autophagy defects contribute to impaired insulin-stimulated glucose uptake and insulin signaling. Mechanistically, we show that iron overload leads to a decrease in Akt-mediated repression of tuberous sclerosis complex (TSC2) and Rheb-mediated mTORC1 activation on autolysosomes, thereby inhibiting autophagic-lysosome regeneration. Constitutive activation of mTORC1 or iron withdrawal replenishes lysosomal pools via increased mTORC1-UVRAG signaling, which restores insulin sensitivity. Induction of iron overload via intravenous iron-dextran delivery in mice also results in insulin resistance accompanied by abnormal autophagosome accumulation, lysosomal loss, and decreased mTORC1-UVRAG signaling in muscle. Collectively, our results show that chronic iron overload leads to a profound autophagy defect through mTORC1-UVRAG inhibition and provides new mechanistic insight into metabolic syndrome-associated insulin resistance.
    Keywords:   ALR ; autophagy; insulin resistance; iron overload; mTORC1
    DOI:  https://doi.org/10.15252/embr.201947911