bims-pideca Biomed News
on Class IA PI3K signalling in development and cancer
Issue of 2019‒08‒04
sixteen papers selected by
Ralitsa Radostinova Madsen
University College London Cancer Institute


  1. EMBO Mol Med. 2019 Aug 02. e10567
      Heterotopic ossification (HO) is the pathological formation of ectopic endochondral bone within soft tissues. HO occurs following mechanical trauma, burns, or congenitally in patients suffering from fibrodysplasia ossificans progressiva (FOP). FOP patients carry a conserved mutation in ACVR1 that becomes neomorphic for activin A responses. Here, we demonstrate the efficacy of BYL719, a PI3Kα inhibitor, in preventing HO in mice. We found that PI3Kα inhibitors reduce SMAD, AKT, and mTOR/S6K activities. Inhibition of PI3Kα also impairs skeletogenic responsiveness to BMPs and the acquired response to activin A of the Acvr1R206H allele. Further, the efficacy of PI3Kα inhibitors was evaluated in transgenic mice expressing Acvr1Q207D . Mice treated daily or intermittently with BYL719 did not show ectopic bone or cartilage formation. Furthermore, the intermittent treatment with BYL719 was not associated with any substantial side effects. Therefore, this work provides evidence supporting PI3Kα inhibition as a therapeutic strategy for HO.
    Keywords:  PI3K; bone; bone morphogenetic protein; fibrodysplasia ossificans progressiva; heterotopic ossification
    DOI:  https://doi.org/10.15252/emmm.201910567
  2. Cancers (Basel). 2019 Jul 30. pii: E1076. [Epub ahead of print]11(8):
      PTEN is one of the most frequently inactivated tumor suppressor genes in cancer. Loss or variation in PTEN gene/protein levels is commonly observed in a broad spectrum of human cancers, while germline PTEN mutations cause inherited syndromes that lead to increased risk of tumors. PTEN restrains tumorigenesis through different mechanisms ranging from phosphatase-dependent and independent activities, subcellular localization and protein interaction, modulating a broad array of cellular functions including growth, proliferation, survival, DNA repair, and cell motility. The main target of PTEN phosphatase activity is one of the most significant cell growth and pro-survival signaling pathway in cancer: PI3K/AKT/mTOR. Several shreds of evidence shed light on the critical role of PTEN in normal and cancer stem cells (CSCs) homeostasis, with its loss fostering the CSC compartment in both solid and hematologic malignancies. CSCs are responsible for tumor propagation, metastatic spread, resistance to therapy, and relapse. Thus, understanding how alterations of PTEN levels affect CSC hallmarks could be crucial for the development of successful therapeutic approaches. Here, we discuss the most significant findings on PTEN-mediated control of CSC state. We aim to unravel the role of PTEN in the regulation of key mechanisms specific for CSCs, such as self-renewal, quiescence/cell cycle, Epithelial-to-Mesenchymal-Transition (EMT), with a particular focus on PTEN-based therapy resistance mechanisms and their exploitation for novel therapeutic approaches in cancer treatment.
    Keywords:  PTEN; cancer stem cells; targeted therapy; therapy resistance
    DOI:  https://doi.org/10.3390/cancers11081076
  3. Biomolecules. 2019 Aug 01. pii: E331. [Epub ahead of print]9(8):
      Genetic activation of the class I PI3K pathway is very common in cancer. This mostly results from oncogenic mutations in PIK3CA, the gene encoding the ubiquitously expressed PI3Kα catalytic subunit, or from inactivation of the PTEN tumour suppressor, a lipid phosphatase that opposes class I PI3K signalling. The clinical impact of PI3K inhibitors in solid tumours, aimed at dampening cancer-cell-intrinsic PI3K activity, has thus far been limited. Challenges include poor drug tolerance, incomplete pathway inhibition and pre-existing or inhibitor-induced resistance. The principle of pharmacologically targeting cancer-cell-intrinsic PI3K activity also assumes that all cancer-promoting effects of PI3K activation are reversible, which might not be the case. Emerging evidence suggests that genetic PI3K pathway activation can induce and/or allow cells to tolerate chromosomal instability, which-even if occurring in a low fraction of the cell population-might help to facilitate and/or drive tumour evolution. While it is clear that such genomic events cannot be reverted pharmacologically, a role for PI3K in the regulation of chromosomal instability could be exploited by using PI3K pathway inhibitors to prevent those genomic events from happening and/or reduce the pace at which they are occurring, thereby dampening cancer development or progression. Such an impact might be most effective in tumours with clonal PI3K activation and achievable at lower drug doses than the maximum-tolerated doses of PI3K inhibitors currently used in the clinic.
    Keywords:  PI 3-kinase; PI3K inhibitor; cancer; centrosome; chromosomal instability; tumour evolution
    DOI:  https://doi.org/10.3390/biom9080331
  4. Breast Cancer Res Treat. 2019 Jul 31.
      PURPOSE: This open-label, phase Ib, dose-escalation, and dose-expansion study (NCT01862081) evaluated taselisib with a taxane in locally advanced or metastatic breast cancer (BC) and/or non-small cell lung cancer (NSCLC).METHODS: Patients received taselisib (2-6 mg tablet or 3-6 mg capsule) plus docetaxel or paclitaxel. Primary endpoints were safety, dose-limiting toxicities, maximum tolerated dose, and identification of a recommended phase II dose. Secondary endpoints included pharmacokinetics and antitumor activity assessment.
    RESULTS: Eighty patients (BC: 72; NSCLC: 7; BC/NSCLC: 1) were enrolled (docetaxel-receiving arms: 21; paclitaxel-receiving arms: 59). Grade ≥ 3 adverse events (AEs), serious AEs, and AEs leading to death were reported in 90.5%, 42.9%, and 14.3% of patients, respectively (docetaxel-receiving arms), and 78.9%, 40.4%, and 3.5% of patients, respectively (paclitaxel-receiving arms). Eight patients experienced dose-limiting toxicities. The maximum tolerated dose was exceeded with 3 mg taselisib (capsule) for 21 consecutive days plus 75 mg/m2 docetaxel and not exceeded with 6 mg taselisib (tablet) for 5 days on/2 days off plus 80 mg/m2 paclitaxel. Objective response rates and clinical benefit rates were 35.0% and 45.0%, respectively (docetaxel-receiving arms), and 20.4% and 27.8%, respectively (paclitaxel-receiving arms). Exposure for paclitaxel or docetaxel plus taselisib was consistent with the single agents.
    CONCLUSIONS: Taselisib in combination with a taxane has a challenging safety profile. Despite evidence of antitumor activity, the benefit-risk profile was deemed not advantageous. Further development is not planned.
    Keywords:  GDC-0032; Metastatic breast cancer; PI3K; PI3K inhibitor; PIK3CA; Taselisib
    DOI:  https://doi.org/10.1007/s10549-019-05360-3
  5. Curr Hematol Malig Rep. 2019 Jul 29.
      PURPOSE OF REVIEW: The outcome of patients with lymphoid malignancies has markedly improved in recent years which is likely due to a combination of advances in supportive care, and therapeutic options. In this article, we will provide an overview over the role PI3-kinase signalling, one of the most important dysregulated pathways in cancer, and its successful inhibition in lymphoma.RECENT FINDINGS: PI3-kinase inhibitors have shown remarkable activity in an increasing subset of patients with non-Hodgkin lymphomas. The first drug to be approved was idelalisib for patients with relapsed/refractory follicular lymphoma and CLL/SLL as monotherapy, or in combination with rituximab, respectively. After an initial setback related to increased toxicity including deaths observed in several upfront studies, there has been a resurgence in interest in this pathway following the promising efficacy of second-generation PI3K inhibitors including in patients with T cell lymphomas. PI3K inhibition continues to be an invaluable tool in the therapy of patients with lymphoid malignancies if managed cautiously. Preclinical models are helpful in predicting possible side effects and identifying new lymphoma subtypes that may be susceptible to this class of agents. The future will likely involve rationally designed combinatorial approaches to deepen the response rate and prevent the emergence of resistance.
    Keywords:  B cell receptor; CLL; Follicular lymphoma; Lymphoma; PI3-kinase; T cell lymphoma; Tumor microenvironment
    DOI:  https://doi.org/10.1007/s11899-019-00540-w
  6. Nat Commun. 2019 Jul 30. 10(1): 3412
      Skeletal muscle insulin resistance, decreased phosphatidylinositol 3-kinase (PI3K) activation and altered mitochondrial function are hallmarks of type 2 diabetes. To determine the relationship between these abnormalities, we created mice with muscle-specific knockout of the p110α or p110β catalytic subunits of PI3K. We find that mice with muscle-specific knockout of p110α, but not p110β, display impaired insulin signaling and reduced muscle size due to enhanced proteasomal and autophagic activity. Despite insulin resistance and muscle atrophy, M-p110αKO mice show decreased serum myostatin, increased mitochondrial mass, increased mitochondrial fusion, and increased PGC1α expression, especially PCG1α2 and PCG1α3. This leads to enhanced mitochondrial oxidative capacity, increased muscle NADH content, and higher muscle free radical release measured in vivo using pMitoTimer reporter. Thus, p110α is the dominant catalytic isoform of PI3K in muscle in control of insulin sensitivity and muscle mass, and has a unique role in mitochondrial homeostasis in skeletal muscle.
    DOI:  https://doi.org/10.1038/s41467-019-11265-y
  7. Clin Cancer Res. 2019 Aug 01. pii: clincanres.0138.2019. [Epub ahead of print]
      PURPOSE: While FGFR1 amplification has been described in breast cancer, the optimal treatment approach for FGFR1-amplified (FGFR1+) metastatic breast cancer (MBC) remains undefined.EXPERIMENTAL DESIGN: We evaluated clinical response to endocrine and targeted therapies in a cohort of patients with HR+/HER2- MBC and validated the functional role of FGFR1-amplification in mediating response/resistance to hormone therapy in vitro. Results: In the clinical cohort (N=110), we identified that patients with FGFR1+ tumors were more likely to have PR-negative disease (47% vs 20%; p=0.005), co-existing TP53 mutations (41% vs. 21%; p = .05), and exhibited shorter time to progression with endocrine therapy alone and in combination with CDK4/6 inhibitor, but not with a TORC1 inhibitor (everolimus), adjusting for key prognostic variables in multivariate analysis. Furthermore, mTOR-based therapy resulted in a sustained radiological and molecular response with decrease in FGFR1 circulating tumor DNA (ctDNA) in an index case of FGFR1+ HR+/HER2- MBC. In pre-clinical models, ER+/FGFR1 amplified CAMA1 human breast cancer cells were only partially sensitive to fulvestrant, palbociclib, alpelisib, but highly sensitive to everolimus. In addition, transduction of a FGFR1 expression vector into ER+ T47D cells induced resistance to fulvestrant that could be overcome by added TORC1 inhibition, but not PI3K or CDK4/6 inhibition.
    CONCLUSION: Collectively, these findings suggest that while FGFR1 amplification confers broad resistance to ER, PI3K, and CDK4/6 inhibitors, TORC1 inhibitors might have a unique therapeutic role in the treatment of patients with ER+/FGFR1+ MBC.
    DOI:  https://doi.org/10.1158/1078-0432.CCR-19-0138
  8. Biochem Biophys Res Commun. 2019 Jul 24. pii: S0006-291X(19)31372-5. [Epub ahead of print]
      The phosphinositide PtdIns(3)P plays an important role in autophagy; however, the detailed mechanism of its activity remains unclear. Here, we used a Systematic Evolution of Ligands by EXponential enrichment (SELEX) screening approach to identify an RNA aptamer of 40 nucleotides that specifically recognizes and binds to intracellular lysosomal PtdIns(3)P. Binding occurs in a magnesium concentration- and pH-dependent manner, and consequently inhibits autophagy as determined by LC3II/I conversion, p62 degradation, formation of LC3 puncta, and lysosomal accumulation of Phafin2. These effects in turn inhibited lysosomal acidification, and the subsequent hydrolytic activity of cathepsin D following induction of autophagy. Given the essential role of PtdIns(3)P as a key targeting molecule for autophagy induction, identification of this novel PtdIns(3)P RNA aptamer provides new opportunities for investigating the biological functions and mechanisms of phosphoinositides.
    Keywords:  Autophagy; Lysosome; Molecular imaging; PI3K; Phosphoinositide; RNA aptamer
    DOI:  https://doi.org/10.1016/j.bbrc.2019.07.034
  9. Nucleic Acids Res. 2019 Aug 02. pii: gkz648. [Epub ahead of print]
      Global protein synthesis is emerging as an important player in the context of aging and age-related diseases. However, the intricate molecular networks that regulate protein synthesis are poorly understood. Here, we report that SIRT6, a nuclear-localized histone deacetylase represses global protein synthesis by transcriptionally regulating mTOR signalling via the transcription factor Sp1, independent of its deacetylase activity. Our results suggest that SIRT6 deficiency increases protein synthesis in mice. Further, multiple lines of in vitro evidence suggest that SIRT6 negatively regulates protein synthesis in a cell-autonomous fashion and independent of its catalytic activity. Mechanistically, SIRT6 binds to the zinc finger DNA binding domain of Sp1 and represses its activity. SIRT6 deficiency increased the occupancy of Sp1 at key mTOR signalling gene promoters resulting in enhanced expression of these genes and activation of the mTOR signalling pathway. Interestingly, inhibition of either mTOR or Sp1 abrogated the increased protein synthesis observed under SIRT6 deficient conditions. Moreover, pharmacological inhibition of mTOR restored cardiac function in muscle-specific SIRT6 knockout mice, which spontaneously develop cardiac hypertrophy. Overall, these findings have unravelled a new layer of regulation of global protein synthesis by SIRT6, which can be potentially targeted to combat aging-associated diseases like cardiac hypertrophy.
    DOI:  https://doi.org/10.1093/nar/gkz648
  10. Nature. 2019 Jul 31.
      Nutrition exerts considerable effects on health, and dietary interventions are commonly used to treat diseases of metabolic aetiology. Although cancer has a substantial metabolic component1, the principles that define whether nutrition may be used to influence outcomes of cancer are unclear2. Nevertheless, it is established that targeting metabolic pathways with pharmacological agents or radiation can sometimes lead to controlled therapeutic outcomes. By contrast, whether specific dietary interventions can influence the metabolic pathways that are targeted in standard cancer therapies is not known. Here we show that dietary restriction of the essential amino acid methionine-the reduction of which has anti-ageing and anti-obesogenic properties-influences cancer outcome, through controlled and reproducible changes to one-carbon metabolism. This pathway metabolizes methionine and is the target of a variety of cancer interventions that involve chemotherapy and radiation. Methionine restriction produced therapeutic responses in two patient-derived xenograft models of chemotherapy-resistant RAS-driven colorectal cancer, and in a mouse model of autochthonous soft-tissue sarcoma driven by a G12D mutation in KRAS and knockout of p53 (KrasG12D/+;Trp53-/-) that is resistant to radiation. Metabolomics revealed that the therapeutic mechanisms operate via tumour-cell-autonomous effects on flux through one-carbon metabolism that affects redox and nucleotide metabolism-and thus interact with the antimetabolite or radiation intervention. In a controlled and tolerated feeding study in humans, methionine restriction resulted in effects on systemic metabolism that were similar to those obtained in mice. These findings provide evidence that a targeted dietary manipulation can specifically affect tumour-cell metabolism to mediate broad aspects of cancer outcome.
    DOI:  https://doi.org/10.1038/s41586-019-1437-3
  11. Stem Cell Res Ther. 2019 Jul 29. 10(1): 228
      BACKGROUND: Human-induced pluripotent stem cells (hiPSCs) show a great promise as a renewable source of cells with broad biomedical applications. Since insulin has been used in the maintenance of hiPSCs, in this study we explored the role of insulin in culture of these cells.METHODS: We report conditions for insulin starvation and stimulation of hiPSCs. Crystal violet staining was used to study the adhesion and proliferation of hiPSCs. Apoptosis and cell cycle assays were performed through flow cytometry. Protein arrays were used to confirm phosphorylation targets, and mRNA sequencing was used to evaluate the effect of transcriptome.
    RESULTS: Insulin improved the seeding and proliferation of hiPSCs. We also observed an altered cell cycle profile and increase in apoptosis in hiPSCs in the absence of insulin. Furthermore, we confirmed phosphorylation of key components of insulin signaling pathway in the presence of insulin and demonstrated the significant effect of insulin on regulation of the mRNA transcriptome of hiPSCs.
    CONCLUSION: Insulin is a major regulator of seeding, proliferation, phosphorylation and mRNA transcriptome in hiPSCs. Collectively, our work furthers our understanding of human pluripotency and paves the way for future studies that use hiPSCs for modeling genetic ailments affecting insulin signaling pathways.
    Keywords:  Apoptosis; Insulin; Insulin signaling; Pluripotent stem cells; Proliferation; Transcriptional regulation
    DOI:  https://doi.org/10.1186/s13287-019-1319-5
  12. Cells. 2019 Jul 31. pii: E803. [Epub ahead of print]8(8):
      The mammalian or mechanistic target of rapamycin (mTOR) and associated phosphatidyl-inositiol 3-kinase (PI3K)/protein kinase B (Akt) pathways regulate cell growth, differentiation, migration, and survival, as well as angiogenesis and metabolism. Dysregulation of these pathways is frequently associated with genetic/epigenetic alterations and predicts poor treatment outcomes in a variety of human cancers including cutaneous malignancies like melanoma and non-melanoma skin cancers. Recently, the enhanced understanding of the molecular and genetic basis of skin dysfunction in patients with skin cancers has provided a strong basis for the development of novel therapeutic strategies for these obdurate groups of skin cancers. This review summarizes recent advances in the roles of PI3K/Akt/mTOR and their targets in the development and progression of a broad spectrum of cutaneous cancers and discusses the current progress in preclinical and clinical studies for the development of PI3K/Akt/mTOR targeted therapies with nutraceuticals and synthetic small molecule inhibitors.
    Keywords:  Akt; Merkel cell carcinoma; PI3K; basal cell carcinoma; mTOR; melanoma; phytochemicals; skin cancers; squamous cell carcinoma; targeted therapy
    DOI:  https://doi.org/10.3390/cells8080803
  13. FASEB J. 2019 Jul 31. fj201900733RR
      Bone morphogenetic protein (BMP)9 has been reported to be the most potent BMP to induce bone formation. However, the details of BMP9-transduced intracellular signaling remain ambiguous. Here, we have investigated signal transduction mechanisms of BMP9 in comparison to BMP2, another potent inducer of bone formation, in osteoblasts. In a mouse osteoblast cell line, BMP9 induced higher mRNA levels of alkaline phosphatase (ALP) and runt-related transcription factor 2 (Runx2) than BMP2 within 2 h. Unlike BMP2, BMP9 induced rapid phosphorylation of glycogen synthase kinase 3-β (GSK3-β) and protein kinase B (Akt) and increased the cellular protein content of β-catenin. BMP9 moderately increased mRNA levels of several canonical Wingless-related integration site to lower degrees than BMP2. Furthermore, BMP9-induced GSK3-β phosphorylation was not inhibited by pretreatment with actinomycin D, cycloheximide, or Brefeldin A, indicating it is independent of Wnt protein secretion. BMP9-induced GSK3-β phosphorylation was abrogated by Akt or class I PI3K-specific inhibitors. Moreover, inactivation of GSK3-β by LiCl did not further promote ALP and Runx2 mRNA induction by BMP9 as significantly as that by BMP2. Notably, BMP9-induced GSK3-β phosphorylation was inhibited by small interfering RNA against endoglin and GIPC PDZ domain-containing family, member 1. Taken together, our present findings have indicated that BMP9 directly activates GSK3β-β-catenin signaling pathway through class I PI3K-Akt Axis in osteoblasts, which may be essential for the potent osteoinductive activity of BMP9.-Eiraku, N., Chiba, N., Nakamura, T., Amir, M. S., Seong, C.-H., Ohnishi, T., Kusuyama, J., Noguchi, K., Matsuguchi, T. BMP9 directly induces rapid GSK3-β phosphorylation in a Wnt-independent manner through class I PI3K-Akt axis in osteoblasts.
    Keywords:  GIPC1; endoglin; osteoblast differentiation
    DOI:  https://doi.org/10.1096/fj.201900733RR
  14. Aging Cell. 2019 Aug 01. e13014
      The mechanistic target of rapamycin (mTOR) is an evolutionarily conserved protein kinase that regulates growth and metabolism. mTOR is found in two protein complexes, mTORC1 and mTORC2, that have distinct components and substrates and are both inhibited by rapamycin, a macrolide drug that robustly extends lifespan in multiple species including worms and mice. Although the beneficial effect of rapamycin on longevity is generally attributed to reduced mTORC1 signaling, disruption of mTORC2 signaling can also influence the longevity of worms, either positively or negatively depending on the temperature and food source. Here, we show that loss of hypothalamic mTORC2 signaling in mice decreases activity level, increases the set point for adiposity, and renders the animals susceptible to diet-induced obesity. Hypothalamic mTORC2 signaling normally increases with age, and mice lacking this pathway display higher fat mass and impaired glucose homeostasis throughout life, become more frail with age, and have decreased overall survival. We conclude that hypothalamic mTORC2 is essential for the normal metabolic health, fitness, and lifespan of mice. Our results have implications for the use of mTORC2-inhibiting pharmaceuticals in the treatment of brain cancer and diseases of aging.
    Keywords:  frailty; hypothalamus; lifespanobesity; mTOR; mTORC2; obesity
    DOI:  https://doi.org/10.1111/acel.13014
  15. Proc Natl Acad Sci U S A. 2019 Aug 01. pii: 201902843. [Epub ahead of print]
      Epithelial-to-mesenchymal transitions (EMTs) require a complete reorganization of cadherin-based cell-cell junctions. p120-catenin binds to the cytoplasmic juxtamembrane domain of classical cadherins and regulates their stability, suggesting that p120-catenin may play an important role in EMTs. Here, we describe the role of p120-catenin in mouse gastrulation, an EMT that can be imaged at cellular resolution and is accessible to genetic manipulation. Mouse embryos that lack all p120-catenin, or that lack p120-catenin in the embryo proper, survive to midgestation. However, mutants have specific defects in gastrulation, including a high rate of p53-dependent cell death, a bifurcation of the posterior axis, and defects in the migration of mesoderm; all are associated with abnormalities in the primitive streak, the site of the EMT. In embryonic day 7.5 (E7.5) mutants, the domain of expression of the streak marker Brachyury (T) expands more than 3-fold, from a narrow strip of posterior cells to encompass more than one-quarter of the embryo. After E7.5, the enlarged T+ domain splits in 2, separated by a mass of mesoderm cells. Brachyury is a direct target of canonical WNT signaling, and the domain of WNT response in p120-catenin mutant embryos, like the T domain, is first expanded, and then split, and high levels of nuclear β-catenin levels are present in the cells of the posterior embryo that are exposed to high levels of WNT ligand. The data suggest that p120-catenin stabilizes the membrane association of β-catenin, thereby preventing accumulation of nuclear β-catenin and excessive activation of the WNT pathway during EMT.
    Keywords:  WNT signaling; cell migration; epithelial–mesenchymal transition; gastrulation; p53-dependent cell death
    DOI:  https://doi.org/10.1073/pnas.1902843116
  16. Nat Methods. 2019 Aug;16(8): 703-706
      Proteins can be phosphorylated at neighboring sites resulting in different functional states, and studying the regulation of these sites has been challenging. Here we present Thesaurus, a search engine that detects and quantifies phosphopeptide positional isomers from parallel reaction monitoring and data-independent acquisition mass spectrometry experiments. We apply Thesaurus to analyze phosphorylation events in the PI3K/AKT signaling pathway and show neighboring sites with distinct regulation.
    DOI:  https://doi.org/10.1038/s41592-019-0498-4