bims-oxygme Biomed News
on Oxygen metabolism
Issue of 2025–06–01
six papers selected by
Onurkan Karabulut, Berkeley City College



  1. Mol Med Rep. 2025 Aug;pii: 215. [Epub ahead of print]32(2):
      High‑altitude pulmonary injury, characterized by pulmonary edema and pulmonary hypertension, is mechanistically driven by dysregulated mitophagy, as evidenced by impaired mitochondrial quality control in endothelial cells under hypobaric hypoxia. Iron supplementation for individuals who have ascended rapidly to high altitudes can effectively mitigate the phenomenon of hypoxic pulmonary vasoconstriction; however, the precise role and detailed mechanisms remain to be determined. The present study aimed to explore the role and mechanism of iron in acute hypoxia‑induced lung injury. Sprague‑Dawley rats were initially placed in a hypobaric hypoxia chamber for various durations to determine the optimal time for acute hypoxia‑induced lung injury. The rats were exposed to a hypobaric hypoxia chamber for 3 days, during which they were treated with an iron chelator or iron sucrose. Mean pulmonary artery pressure (mPAP) was measured to assess hypoxic pulmonary vascular response. Furthermore, the degree of lung injury was assessed by calculating the pulmonary wet/dry weight ratio, and via morphological evaluation of lung tissues and the pulmonary vasculature. Immunofluorescence and western blot analysis were performed to assess hypoxia‑inducible factor 1α (HIF1α) expression and mitophagy levels. Edu and Cell Counting Kit 8 assays were conducted to evaluate cell proliferation under acute hypoxia. In addition, immunofluorescence and western blot analysis were performed to evaluate the expression levels of proteins associated with cell apoptosis and mitophagy. The results indicated that mitophagy (LC3B‑II/LC3B‑I expression), pulmonary edema (lung wet/dry weight ratio) and lung injury score were most significant after 3 days of hypoxia. However, mitophagy (LC3B‑II/LC3B‑I ratio) and lung injury scores peaked after 4 weeks of hypoxic conditions. Furthermore, an iron chelator was observed to promote pulmonary edema, elevate mPAP and cause lung injury. Conversely, iron sucrose was shown to attenuate lung injury in acute hypoxia. The mechanistic findings indicated that acute hypoxia induced HIF1α activation and increased mitophagy, which promoted a reduction in proliferation and an increase in the apoptosis of pulmonary artery endothelial cells. Furthermore, the iron chelator promoted, whereas iron sucrose ameliorated, the abnormal alterations in pulmonary artery endothelial cells under acute hypoxia. In conclusion, the present study demonstrated that a reduction in iron bioavailability in acute hypoxia may promote HIF1α activation and increased mitophagy, which in turn has been linked to the development of pulmonary edema, elevated mPAP and lung injury. The administration of iron supplementation may be considered an effective method for the alleviation of the aforementioned abnormalities resulting from acute hypoxia.
    Keywords:  acute hypoxia; high‑altitude lung injury; hypoxia‑inducible factor 1α; iron bioavailability; mitophagy
    DOI:  https://doi.org/10.3892/mmr.2025.13580
  2. Int J Mol Sci. 2025 May 20. pii: 4900. [Epub ahead of print]26(10):
      Hypoxia, a low-oxygen state, is a common feature of solid tumors. MCP1 (CCL2) is a small cytokine that is closely related to hypoxia and has a positive effect on tumor development. Hypoxia causes resistance to various treatments for solid tumors and the evasion of cancer immune surveillance by lymphocytes. Natural killer (NK) cells are innate lymphocytes that play an important role in cancer development, particularly in the liver. First, it was found that the incubation of HCC in hypoxia (2-5% O2) significantly increased the production of several inflammatory cytokines, including MCP1, compared to that of normal oxygen (20% O2). Subsequently, blocking MCP1 with an anti-MCP1 antibody in HCC cultures inhibited the growth and migration of HCC cells in vitro and in vivo. This was associated with a decrease in the expression of HIF-1α/STAT3 in HCC under hypoxia. Furthermore, blocking MCP1 in HCC cell cultures under hypoxia significantly increased the chemotaxis and activation of NK-92 cells against HCC cells. MCP1 blockade in HCC cell cultures under hypoxia induced a shift in NK cells to the CD56+dim population and an increase in the expression of the activation receptors NKG2D and NKp44. In conclusion, modulation of MCP1 could enhance NK activity against hypoxic HCC cells.
    Keywords:  MCP1 (CCL2); human hepatocellular carcinoma (HCC); hypoxia; natural killer (NK) cell; tumor microenvironment
    DOI:  https://doi.org/10.3390/ijms26104900
  3. Front Physiol. 2025 ;16 1598275
      
    Keywords:  ageing; health; hypoxia conditioning; life span; moderate altitude; oxygen
    DOI:  https://doi.org/10.3389/fphys.2025.1598275
  4. J Mol Med (Berl). 2025 May 30.
      Tumor hypoxia, a hallmark of the tumor microenvironment (TME), profoundly impacts the antitumor functionality of immune cells, particularly natural killer (NK) cells, which play a critical role in cancer immunosurveillance and immunotherapy success. This review provides a comprehensive analysis of the mechanisms by which hypoxia impairs NK cell-mediated cytotoxicity and antitumor activities, emphasizing the molecular pathways and cellular adaptations that enable cancer cell to evade NK cell attack. Key factors that participate in this phenomenon include the stabilization of hypoxia-inducible factors, metabolic reprogramming, angiogenesis, cancer stemness, autophagy, and the secretion of immunosuppressive molecules. Moreover, hypoxia induces phenotypic and functional changes in both cancer and NK cells, promoting tumor progression and resistance to immunotherapy. Emerging strategies to counteract hypoxia-induced immunosuppression are being explored, including nanotechnology-based approaches, cytokine-mediated NK cell preconditioning, and vascular normalization techniques. These interventions highlight promising avenues for enhancing NK cell functionality and synergizing with existing cancer therapies. By addressing the immunosuppressive challenges of the hypoxic TME, in this review, we underscore the potential of innovative strategies to improve therapeutic outcomes in cancer treatment.
    Keywords:  Cytotoxicity; Immune suppression; Natural killer cell; Tumor hypoxia
    DOI:  https://doi.org/10.1007/s00109-025-02557-6
  5. Animals (Basel). 2025 May 13. pii: 1407. [Epub ahead of print]15(10):
      The Tibetan goat (Capra hircus) exhibits remarkable adaptations to high-altitude hypoxia, yet the molecular mechanisms remain unclear. This study integrates RNA-seq, WGCNA, and machine learning to explore gene-environment interactions (G × E) in hypoxia adaptation. Fibroblasts from the Tibetan goat and Yunling goat were cultured under hypoxic (1% O2) and normoxic (21% O2) conditions, respectively. This identified 68 breed-specific (G), 100 oxygen-responsive (E), and 620 interaction-driven (I) Differentially Expressed Genes (DEGs). The notably higher number of interaction-driven DEGs compared to other effects highlights transcriptional plasticity. We defined two gene sets: Environmental Stress Genes (n = 632, E ∪ I) and Genetic Adaptation Genes (n = 659, G ∪ I). The former were significantly enriched in pathways related to oxidative stress defense and metabolic adaptation, while the latter showed prominent enrichment in pathways associated with vascular remodeling and transcriptional regulation. CTNNB1 emerged as a key regulatory factor in both gene sets, interacting with CASP3 and MMP2 to form the core of the protein-protein interaction (PPI) network. Machine learning identified MAP3K5, TGFBR2, RSPO1 and ITGB5 as critical genes. WGCNA identified key modules in hypoxia adaptation, where FOXO3, HEXIM1, and PPARD promote the stabilization of HIF-1α and metabolic adaptation through the HIF-1 signaling pathway and glycolysis. These findings underscore the pivotal role of gene-environment interactions in hypoxic adaptation, offering novel perspectives for both livestock breeding programs and biomedical research initiatives.
    Keywords:  DEGs; HIF-1 signaling pathway; WGCNA; gene–environment interactions; machine learning
    DOI:  https://doi.org/10.3390/ani15101407
  6. Biomolecules. 2025 May 21. pii: 742. [Epub ahead of print]15(5):
      Iron deficiency is highly prevalent in patients with idiopathic pulmonary hypertension; nevertheless, its role and clinical significance in hypoxic pulmonary hypertension (HPH) remain elusive. Therefore, this study aims to clarify the role and molecular mechanisms of iron in HPH. By means of a retrospective analysis of clinical data from HPH patients and examinations of HPH animal models, we discovered that both HPH patients and animal models exhibit significant iron deficiency, characterized by reduced hepatic iron storage and elevated hepcidin expression. To further explore iron's role in HPH, we modulated iron metabolism through pharmacological and dietary interventions in chronic hypoxic animal models. The results showed that iron deficiency exacerbated chronic hypoxia-induced pulmonary hypertension and right ventricular hypertrophy, while iron supplementation alleviated these conditions. Further investigations revealed that iron regulates HIF2α expression in pulmonary arterial endothelial cells (PAECs) under chronic hypoxia. Therefore, through in vivo and in vitro experiments, we demonstrated that HIF2α inhibition attenuates chronic hypoxia-induced pulmonary hypertension and right ventricular hypertrophy. Mechanistically, chronic hypoxia-mediated iron deficiency enhances HIF2α activation, subsequently suppressing iron/sulfur cluster assembly enzyme (ISCU) expression. This leads to decreased mitochondrial complexes I and III activity, increased reactive oxygen species (ROS) production, and inhibited oxidative phosphorylation. Consequently, metabolic reprogramming in PAECs results in a proliferation/apoptosis imbalance, ultimately exacerbating hypoxia-induced pulmonary hypertension and right ventricular hypertrophy. Collectively, our findings demonstrate that iron supplementation mitigates HPH progression by modulating HIF2α-mediated metabolic reprogramming in PAECs, revealing multiple therapeutic targets for HPH.
    Keywords:  HIF2α; Mmitochondrial reactive oxygen species; energy metabolic reprogramming; hypoxic pulmonary hypertension; iron metabolism
    DOI:  https://doi.org/10.3390/biom15050742