J Exp Clin Cancer Res. 2025 Jun 12. 44(1): 174
Mehdi Ben Sassi,
Henri Azais,
Charles Marcaillou,
Sylvain Guibert,
Emmanuel Martin,
Jérôme Alexandre,
Louise Benoit,
Aurélien de Reynies,
Emilie Laude,
Cam Duong,
Jacques Medioni,
Bruno Borghese,
Anne-Sophie Bats,
Valerie Taly,
Pierre Laurent-Puig.
BACKGROUND: Epithelial ovarian cancer (EOC) is a leading cause of cancer mortality in women, often diagnosed at advanced stages. While first-line treatments improve survival, relapses remain common, with 5-year survival rates below 40%. Circulating tumor DNA (ctDNA) is a promising biomarker for non-invasive EOC detection and monitoring. It may help assess treatment response, notably microscopic residual disease. Our objective was to compare two ctDNA characterization strategies in EOC for assessing tumor burden during first-line treatment: a tumor-informed approach based on somatic mutations and a tumor-type informed approach utilizing DNA methylation patterns.
METHODS: In the tumor-informed approach, whole exome sequencing (WES) was performed on EOC tumor DNA and matched PBMCs from 22 patients to identify tumor-specific mutations. Personalized panels were then designed to track these mutations in plasma cfDNA. In the tumor-type informed approach, differentially methylated loci (DMLs) were identified by comparing EOC samples, healthy ovarian tissues, and PBMCs. A unique custom methylation panel was designed, and a support vector machine classifier was trained to distinguish between methylation profiles in plasma cfDNA from healthy donors and from EOC patients. Plasma samples from 47 advanced-stage EOC patients receiving chemotherapy and 54 healthy subjects were analyzed.
RESULTS: For the tumor-informed approach, WES identified an average of 72 somatic mutations per patient. For the tumor-type informed approach, 52,173 DMLs were identified as tumor-specific markers. In 47 plasma samples tested by both approaches, ctDNA levels were significantly correlated (R = 0.56, p = 4.3 × 10-5), with 70.2% concordance in detection. At baseline, ctDNA was detected in 21/22 patients with the tumor-informed approach, and in 11/12 non-training baseline samples with the tumor-type-informed classifier. At end-of-treatment, the latter detected ctDNA in 16/22 samples, outperforming the former. Detection using this more sensitive approach was significantly associated with relapse (log-rank p = 0.009; hazard ratio = 9.44; 95% CI 1.22-73.26) and poorer overall survival (log-rank p = 0.041).
CONCLUSION: The tumor-type informed classifier demonstrated sensitivity and specificity for ctDNA detection, outperforming the tumor-informed approach in monitoring EOC progression. Requiring fewer sequencing data, it offers a practical, efficient solution for clinical management of EOC.