bims-ovdlit Biomed News
on Ovarian cancer: early diagnosis, liquid biopsy and therapy
Issue of 2022‒06‒05
three papers selected by
Lara Paracchini
Humanitas Research

  1. Brief Bioinform. 2022 Jun 02. pii: bbac200. [Epub ahead of print]
      Cell-free DNA (cfDNA) provides a convenient diagnosis avenue for noninvasive cancer detection. The current methods are focused on identifying circulating tumor DNA (ctDNA)s genomic aberrations, e.g. mutations, copy number aberrations (CNAs) or methylation changes. In this study, we report a new computational method that unifies two orthogonal pieces of information, namely methylation and CNAs, derived from whole-genome bisulfite sequencing (WGBS) data to quantify low tumor content in cfDNA. It implements a Bayes model to enrich ctDNA from WGBS data based on hypomethylation haplotypes, and subsequently, models CNAs for cancer detection. We generated WGBS data in a total of 262 samples, including high-depth (>20×, deduped high mapping quality reads) data in 76 samples with matched triplets (tumor, adjacent normal and cfDNA) and low-depth (~2.5×, deduped high mapping quality reads) data in 186 samples. We identified a total of 54 Mb regions of hypomethylation haplotypes for model building, a vast majority of which are not covered in the HumanMethylation450 arrays. We showed that our model is able to substantially enrich ctDNA reads (tens of folds), with clearly elevated CNAs that faithfully match the CNAs in the paired tumor samples. In the 19 hepatocellular carcinoma cfDNA samples, the estimated enrichment is as high as 16 fold, and in the simulation data, it can achieve over 30-fold enrichment for a ctDNA level of 0.5% with a sequencing depth of 600×. We also found that these hypomethylation regions are also shared among many cancer types, thus demonstrating the potential of our framework for pancancer early detection.
    Keywords:  Bayesian modeling; DNA methylation; cell-free DNA; copy number aberration; liquid biopsy
  2. Genome Med. 2022 May 30. 14(1): 58
      BACKGROUND: Malignant pleural mesothelioma (MPM) has a poor overall survival with few treatment options. Whole genome sequencing (WGS) combined with the immune features of MPM offers the prospect of identifying changes that could inform future clinical trials.METHODS: We analysed somatic mutations from 229 MPM samples, including previously published data and 58 samples that had undergone WGS within this study. This was combined with RNA-seq analysis to characterize the tumour immune environment.
    RESULTS: The comprehensive genome analysis identified 12 driver genes, including new candidate genes. Whole genome doubling was a frequent event that correlated with shorter survival. Mutational signature analysis revealed SBS5/40 were dominant in 93% of samples, and defects in homologous recombination repair were infrequent in our cohort. The tumour immune environment contained high M2 macrophage infiltrate linked with MMP2, MMP14, TGFB1 and CCL2 expression, representing an immune suppressive environment. The expression of TGFB1 was associated with overall survival. A small subset of samples (less than 10%) had a higher proportion of CD8 T cells and a high cytolytic score, suggesting a 'hot' immune environment independent of the somatic mutations.
    CONCLUSIONS: We propose accounting for genomic and immune microenvironment status may influence therapeutic planning in the future.
    Keywords:  Immunotherapy; Malignant pleural mesothelioma; Mutational signatures; RNA sequencing; Tumour micro-environment; Whole genome sequencing
  3. Nature. 2022 Jun 01.
      Clonal expansions driven by somatic mutations become pervasive across human tissues with age, including in the haematopoietic system, where the phenomenon is termed clonal haematopoiesis1-4. The understanding of how and when clonal haematopoiesis develops, the factors that govern its behaviour, how it interacts with ageing and how these variables relate to malignant progression remains limited5,6. Here we track 697 clonal haematopoiesis clones from 385 individuals 55 years of age or older over a median of 13 years. We find that 92.4% of clones expanded at a stable exponential rate over the study period, with different mutations driving substantially different growth rates, ranging from 5% (DNMT3A and TP53) to more than 50% per year (SRSF2P95H). Growth rates of clones with the same mutation differed by approximately ±5% per year, proportionately affecting slow drivers more substantially. By combining our time-series data with phylogenetic analysis of 1,731 whole-genome sequences of haematopoietic colonies from 7 individuals from an older age group, we reveal distinct patterns of lifelong clonal behaviour. DNMT3A-mutant clones preferentially expanded early in life and displayed slower growth in old age, in the context of an increasingly competitive oligoclonal landscape. By contrast, splicing gene mutations drove expansion only later in life, whereas TET2-mutant clones emerged across all ages. Finally, we show that mutations driving faster clonal growth carry a higher risk of malignant progression. Our findings characterize the lifelong natural history of clonal haematopoiesis and give fundamental insights into the interactions between somatic mutation, ageing and clonal selection.