bims-orenst Biomed News
on Organs-on-chips and engineered stem cell models
Issue of 2022–08–07
six papers selected by




  1. Front Bioeng Biotechnol. 2022 ;10 915702
      Tissue-engineered skin constructs have been under development since the 1980s as a replacement for human skin tissues and animal models for therapeutics and cosmetic testing. These have evolved from simple single-cell assays to increasingly complex models with integrated dermal equivalents and multiple cell types including a dermis, epidermis, and vasculature. The development of micro-engineered platforms and biomaterials has enabled scientists to better recreate and capture the tissue microenvironment in vitro, including the vascularization of tissue models and their integration into microfluidic chips. However, to date, microvascularized human skin equivalents in a microfluidic context have not been reported. Here, we present the design of a novel skin-on-a-chip model integrating human-derived primary and immortalized cells in a full-thickness skin equivalent. The model is housed in a microfluidic device, in which a microvasculature was previously established. We characterize the impact of our chip design on the quality of the microvascular networks formed and evidence that this enables the formation of more homogenous networks. We developed a methodology to harvest tissues from embedded chips, after 14 days of culture, and characterize the impact of culture conditions and vascularization (including with pericyte co-cultures) on the stratification of the epidermis in the resulting skin equivalents. Our results indicate that vascularization enhances stratification and differentiation (thickness, architecture, and expression of terminal differentiation markers such as involucrin and transglutaminase 1), allowing the formation of more mature skin equivalents in microfluidic chips. The skin-on-a-chip tissue equivalents developed, because of their realistic microvasculature, may find applications for testing efficacy and safety of therapeutics delivered systemically, in a human context.
    Keywords:  endothelial cell; keratinocyte; microfluidic; microvasculature; organ-on-a-chip; organotypic; pericyte; skin
    DOI:  https://doi.org/10.3389/fbioe.2022.915702
  2. Sci Rep. 2022 Aug 01. 12(1): 13182
      Rapid non-invasive kidney-specific readouts are essential to maximizing the potential of microfluidic tissue culture platforms for drug-induced nephrotoxicity screening. Transepithelial electrical resistance (TEER) is a well-established technique, but it has yet to be evaluated as a metric of toxicity in a kidney proximal tubule (PT) model that recapitulates the high permeability of the native tissue and is also suitable for high-throughput screening. We utilized the PREDICT96 high-throughput microfluidic platform, which has rapid TEER measurement capability and multi-flow control, to evaluate the utility of TEER sensing for detecting cisplatin-induced toxicity in a human primary PT model under both mono- and co-culture conditions as well as two levels of fluid shear stress (FSS). Changes in TEER of PT-microvascular co-cultures followed a dose-dependent trend similar to that demonstrated by lactate dehydrogenase (LDH) cytotoxicity assays and were well-correlated with tight junction coverage after cisplatin exposure. Additionally, cisplatin-induced changes in TEER were detectable prior to increases in cell death in co-cultures. PT mono-cultures had a less differentiated phenotype and were not conducive to toxicity monitoring with TEER. The results of this study demonstrate that TEER has potential as a rapid, early, and label-free indicator of toxicity in microfluidic PT-microvascular co-culture models.
    DOI:  https://doi.org/10.1038/s41598-022-16590-9
  3. Adv Biol (Weinh). 2022 Aug 03. e2200027
      Dysfunction of the aquaporin-4 (AQP4)-dependent glymphatic waste clearance pathway has recently been implicated in the pathogenesis of several neurodegenerative diseases. However, it is difficult to unravel the causative relationship between glymphatic dysfunction, AQP4 depolarization, protein aggregation, and inflammation in neurodegeneration using animal models alone. There is currently a clear, unmet need for in vitro models of the brain's waterscape, and the first steps towards a bona fide "glymphatics-on-a-chip" are taken in the present study. It is demonstrated that chronic exposure to lipopolysaccharide (LPS), amyloid-β(1-42) oligomers, and an AQP4 inhibitor impairs the drainage of fluid and amyloid-β(1-40) tracer in a gliovascular unit (GVU)-on-a-chip model containing human astrocytes and brain microvascular endothelial cells. The LPS-induced drainage impairment is partially retained following cell lysis, indicating that neuroinflammation induces parallel changes in cell-dependent and matrisome-dependent fluid transport pathways in GVU-on-a-chip. Additionally, AQP4 depolarization is observed following LPS treatment, suggesting that LPS-induced drainage impairments on-chip may be driven in part by changes in AQP4-dependent fluid dynamics.
    Keywords:  aquaporin-4; astrocytes; fluid transport; glymphatics-on-a-chip; neuroinflammation
    DOI:  https://doi.org/10.1002/adbi.202200027
  4. Mol Omics. 2022 Aug 02.
      Functional differentiation of pancreatic like tissue from human induced pluripotent stem cells is one of the emerging strategies to achieve an in vitro pancreas model. Here, we propose a protocol to cultivate hiPSC-derived β-like-cells coupling spheroids and microfluidic technologies to improve the pancreatic lineage maturation. The protocol led to the development of spheroids producing the C-peptide and containing cells positive to insulin and glucagon. In order to further characterize the cellular and molecular profiles, we performed full transcriptomics and metabolomics analysis. The omics analysis confirmed the activation of key transcription factors together with the upregulation of genes and the presence of metabolites involved in functional pancreatic tissue development, extracellular matrix remodeling, lipid and fatty acid metabolism, and endocrine hormone signaling. When compared to static 3D honeycomb cultures, dynamic 3D biochip cultures contributed to increase specifically the activity of the HIF transcription factor, to activate the calcium activated cation channels, to enrich the glucagon and insulin pathways and glycolysis/gluconeogenesis, and to increase the secretion of serotonin, glycerol and glycerol-3-phosphate at the metabolic levels.
    DOI:  https://doi.org/10.1039/d2mo00132b
  5. Clin Transl Immunology. 2022 ;11(8): e1407
       Objectives: Crohn's disease (CD) initiation and pathogenesis are believed to involve an environmental trigger in a genetically susceptible person that results in an immune response against commensal gut bacteria, leading to a compromised intestinal epithelial barrier and a cycle of inflammation. However, it has been difficult to study the contribution of all factors together in a physiologically relevant model and in a heterogenous patient population.
    Methods: We developed an autologous colonic monolayer model that incorporated the immune response from the same donor and a commensal bacteria, Faecalibacterium prausnitzii. Two-dimensional monolayers were grown from three-dimensional organoids generated from intestinal biopsies, and the epithelial integrity of the epithelium was measured using transepithelial electrical resistance. We determined the effect of immune cells alone, bacteria alone and the co-culture of immune cells and bacteria on integrity.
    Results: Monolayers derived from CD donors had impaired epithelial integrity compared to those from non-inflammatory bowel disease (IBD) donors. This integrity was further impaired by culture with bacteria, but not immune cells, despite a higher frequency of inflammatory phenotype peripheral T cells in CD donors. Variability in epithelial integrity was higher in CD donors than in non-IBD donors.
    Conclusion: We have developed a new autologous model to study the complexity of CD, which allows for the comparison of the barrier properties of the colonic epithelium and the ability to study how autologous immune cells directly affect the colonic barrier and whether this is modified by luminal bacteria. This new model allows for the study of individual patients and could inform treatment decisions.
    Keywords:  Crohn's disease; T cells; bacteria; cytokines; epithelium; organoid
    DOI:  https://doi.org/10.1002/cti2.1407
  6. Biofabrication. 2022 Aug 02.
      Multicellular liver spheroids are 3D culture models useful in the development of therapies for liver fibrosis. While these models can recapitulate fibrotic disease, current methods for generating them via random aggregation are uncontrolled, yielding spheroids of variable size, function, and utility. Here, we report fabrication of precision liver spheroids with microfluidic flow cytometric printing. Our approach fabricates spheroids cell-by-cell, yielding structures with exact numbers of different cell types. Because spheroid function depends on composition, our precision spheroids have superior functional uniformity, allowing more accurate and statistically significant screens compared to randomly generated spheroids. The approach produces thousands of spheroids per hour, and thus affords a scalable platform by which to manufacture single-cell precision spheroids for disease modeling and high throughput drug testing.
    Keywords:  liver fibrosis; microfluidics; multicellular spheroids; single-cell printing
    DOI:  https://doi.org/10.1088/1758-5090/ac8622