bims-orenst Biomed News
on Organs-on-chips and engineered stem cell models
Issue of 2022–04–24
eleven papers selected by




  1. Methods Mol Biol. 2022 ;2475 239-257
      Relevant human in vitro models of the retinal microvasculature can be used to study the role of disease mediators on retinal barrier dysfunction and assess the efficacy of early drug candidates. This chapter describes an organ-on-a-chip model of the retinal microvasculature that allows for facile quantification of barrier permeability in response to leakage mediators, such as Vascular Endothelial Growth Factor (VEGF), and enables screening of VEGF-induced permeability inhibitors. This chapter also presents an automated confocal imaging method for the visualization of endothelial tube morphology as an additional measure of barrier integrity.
    Keywords:  3D model; Advanced in vitro model; Blood-retinal barrier; High content imaging; Microvasculature; Organ-on-a-chip; VEGF-induced leakage; Vascular permeability
    DOI:  https://doi.org/10.1007/978-1-0716-2217-9_18
  2. Microsyst Nanoeng. 2022 ;8 36
      The patient population suffering from pancreatic ductal adenocarcinoma (PDAC) presents, as a whole, with a high degree of molecular tumor heterogeneity. The heterogeneity of PDAC tumor composition has complicated treatment and stalled success in clinical trials. Current in vitro techniques insufficiently replicate the intricate stromal components of PDAC tumor microenvironments (TMEs) and fail to model a given tumor's unique genetic phenotype. The development of patient-derived organoids (PDOs) has opened the door for improved personalized medicine since PDOs are derived directly from patient tumors, thus preserving the tumors' unique behaviors and genetic phenotypes. This study developed a tumor-chip device engineered to mimic the PDAC TME by incorporating PDOs and stromal cells, specifically pancreatic stellate cells and macrophages. Establishing PDOs in a multicellular microfluidic chip device prolongs cellular function and longevity and successfully establishes a complex organotypic tumor environment that incorporates desmoplastic stroma and immune cells. When primary cancer cells in monoculture were subjected to stroma-depleting agents, there was no effect on cancer cell viability. However, targeting stroma in our tumor-chip model resulted in a significant increase in the chemotherapy effect on cancer cells, thus validating the use of this tumor-chip device for drug testing.
    Keywords:  Engineering; Materials science
    DOI:  https://doi.org/10.1038/s41378-022-00370-6
  3. Sci Adv. 2022 Apr 22. 8(16): eabm3791
      Biomimetic on-chip tissue models serve as a powerful tool for studying human physiology and developing therapeutics; however, their modeling power is hindered by our inability to develop highly ordered functional structures in small length scales. Here, we demonstrate how high-precision fabrication can enable scaled-down modeling of organ-level cardiac mechanical function. We use two-photon direct laser writing (TPDLW) to fabricate a nanoscale-resolution metamaterial scaffold with fine-tuned mechanical properties to support the formation and cyclic contraction of a miniaturized, induced pluripotent stem cell-derived ventricular chamber. Furthermore, we fabricate microfluidic valves with extreme sensitivity to rectify the flow generated by the ventricular chamber. The integrated microfluidic system recapitulates the ventricular fluidic function and exhibits a complete pressure-volume loop with isovolumetric phases. Together, our results demonstrate a previously unexplored application of high-precision fabrication that can be generalized to expand the accessible spectrum of organ-on-a-chip models toward structurally and biomechanically sophisticated tissue systems.
    DOI:  https://doi.org/10.1126/sciadv.abm3791
  4. Biomedicines. 2022 Mar 29. pii: 797. [Epub ahead of print]10(4):
      Blood vessel-on-a-chip models aim at reproducing vascular functions. However, very few efficient methods have been designed to address the need for biological replicates in medium- to high-throughput screenings. Here, vessels-on-chip were designed in polydimethylsiloxane-glass chips using the viscous finger patterning technique which was adapted to create channels with various internal diameters inside a collagen solution and to simultaneously seed cells. This method was refined to create blood vessels composed of two concentric, distinct, and closely appositioned layers of human endothelial and perivascular cells arranged around a hollow lumen. These approaches allowed the formation of structurally correct blood vessels-on-chips which were constituted of either only endothelial cells or of both cell types in order to distinguish the vascular barrier reactivity to drugs in the presence or not of perivascular cells. The established vessels showed a tight vascular barrier, as assessed by immunostaining of the adherens junctions, and were reactive to the natural vasopermeant thrombin and to inflammatory cytokines. The presence of perivascular cells markedly increased the tightness of the vascular barrier and lowered its response to thrombin. The design allowed us to simultaneously challenge in real-time several tens of 3D-reconstituted, multicellular blood vessels in a standard multiwell plate format suitable for high-throughput drug screening.
    Keywords:  BioMEMS; blood vessels; inflammation; microfluidics; organs-on-chips; permeability
    DOI:  https://doi.org/10.3390/biomedicines10040797
  5. Adv Sci (Weinh). 2022 Apr 18. e2105909
      Diseases of the knee joint such as osteoarthritis (OA) affect all joint elements. An in vitro human cell-derived microphysiologica system capable of simulating intraarticular tissue crosstalk is desirable for studying etiologies/pathogenesis of joint diseases and testing potential therapeutics. Herein, a human mesenchymal stem cell-derived miniature joint system (miniJoint) is generated, in which engineered osteochondral complex, synovial-like fibrous tissue, and adipose tissue are integrated into a microfluidics-enabled bioreactor. This novel design facilitates different tissues communicating while still maintaining their respective phenotypes. The miniJoint exhibits physiologically relevant changes when exposed to interleukin-1β mediated inflammation, which are similar to observations in joint diseases in humans. The potential of the miniJoint in predicting in vivo efficacy of drug treatment is confirmed by testing the "therapeutic effect" of the nonsteroidal anti-inflammatory drug, naproxen, as well as four other potential disease-modifying OA drugs. The data demonstrate that the miniJoint recapitulates complex tissue interactions, thus providing a robust organ chip model for the study of joint pathology and the development of novel therapeutic interventions.
    Keywords:  arthritis; human mesenchymal stem cells; inflammation in joint; joint diseases; microphysiological system
    DOI:  https://doi.org/10.1002/advs.202105909
  6. Micromachines (Basel). 2022 Apr 09. pii: 587. [Epub ahead of print]13(4):
      Spheroids are recognized for resembling the important characteristics of natural tumors in cancer research. However, the lack of controllability of the spheroid size, form, and density in conventional spheroid culture methods reduces the reproducibility and precision of bioassay results and the assessment of drug-dose responses in spheroids. Nonetheless, the accurate prediction of cellular responses to drug compounds is crucial for developing new efficient therapeutic agents and optimizing existing therapeutic strategies for personalized medicine. We developed a surface-optimized PDMS microfluidic biochip to produce uniform and homogenous multicellular spheroids in a reproducible manner. This platform is surface optimized with 10% bovine serum albumin (BSA) to provide cell-repellent properties. Therefore, weak cell-surface interactions lead to the promotion of cell self-aggregations and the production of compact and uniform spheroids. We used a lung cancer cell line (A549), a co-culture model of lung cancer cells (A549) with (primary human osteoblasts, and patient-derived spine metastases cells (BML, bone metastasis secondary to lung). We observed that the behavior of cells cultured in three-dimensional (3D) spheroids within this biochip platform more closely reflects in vivo-like cellular responses to a chemotherapeutic drug, Doxorubicin, rather than on 24-well plates (two-dimensional (2D) model). It was also observed that the co-culture and patient-derived spheroids exhibited resistance to anti-cancer drugs more than the mono-culture spheroids. The repeatability of drug test results in this optimized platform is the hallmark of the reproducibility of uniform spheroids on a chip. This surface-optimized biochip can be a reliable platform to generate homogenous and uniform spheroids to study and monitor the tumor microenvironment and for drug screening.
    Keywords:  cancer; drug test; microfluidic; personalized medicine; spheroid; spheroid-on-a-chip
    DOI:  https://doi.org/10.3390/mi13040587
  7. BMC Cancer. 2022 Apr 21. 22(1): 438
       BACKGROUND: Cancer metastasis is the main cause of mortality in cancer patients. However, the drugs targeting metastasis processes are still lacking, which is partially due to the short of effective in vitro model for cell invasion studies. The traditional 2-D culture method cannot reveal the interaction between cells and the surrounding extracellular matrix during invasion process, while the animal models usually are too complex to explain mechanisms in detail. Therefore, a precise and efficient 3-D in vitro model is highly desirable for cell invasion studies and drug screening tests.
    METHODS: Precise micro-fabrication techniques are developed and integrated with soft hydrogels for constructing of 3-D lung-cancer micro-environment, mimicking the pulmonary gland or alveoli as in vivo.
    RESULTS: A 3-D in vitro model for cancer cell culture and metastasis studies is developed with advanced micro-fabrication technique, combining microfluidic system with soft hydrogel. The constructed microfluidic platform can provide nutrition and bio-chemical factors in a continuous transportation mode and has the potential to form stable chemical gradient for cancer invasion research. Hundreds of micro-chamber arrays are constructed within the collagen gel, ensuring that all surrounding substrates for tumor cells are composed of natural collagen hydrogel, like the in vivo micro-environment. The 3-D in vitro model can also provide a fully transparent platform for the visual observation of the cell morphology, proliferation, invasion, cell-assembly, and even the protein expression by immune-fluorescent tests if needed. The lung-cancer cells A549 and normal lung epithelial cells (HPAEpiCs) have been seeded into the 3-D system. It is found out that cells can normally proliferate in the microwells for a long period. Moreover, although the cancer cells A549 and alveolar epithelial cells HPAEpiCs have the similar morphology on 2-D solid substrate, in the 3-D system the cancer cells A549 distributed sparsely as single round cells on the extracellular matrix (ECM) when they attached to the substrate, while the normal lung epithelial cells can form cell aggregates, like the structure of normal tissue. Importantly, cancer cells cultured in the 3-D in vitro model can exhibit the interaction between cells and extracellular matrix. As shown in the confocal microscope images, the A549 cells present round and isolated morphology without much invasion into ECM, while starting from around Day 5, cells changed their shape to be spindle-like, as in mesenchymal morphology, and then started to destroy the surrounding ECM and invade out of the micro-chambers.
    CONCLUSIONS: A 3-D in vitro model is constructed for cancer cell invasion studies, combining the microfluidic system and micro-chamber structures within hydrogel. To show the invasion process of lung cancer cells, the cell morphology, proliferation, and invasion process are all analyzed. The results confirmed that the micro-environment in the 3-D model is vital for revealing the lung cancer cell invasion as in vivo.
    Keywords:  3-D model; Cancer metastasis; Collagen hydrogel; Drug screening; Microfluidic system
    DOI:  https://doi.org/10.1186/s12885-022-09546-9
  8. Adv Mater. 2022 Apr 21. e2200217
      The ability to replicate the three-dimensional myocardial architecture found in human hearts is a grand challenge. Here, we report the fabrication of aligned cardiac tissues via bioprinting anisotropic organ building blocks (aOBBs) composed of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). We first generated a bioink composed of contractile cardiac aOBBs and printed aligned cardiac tissue sheets with linear, spiral, and chevron features. Next, we printed aligned cardiac macrofilaments, whose contractile force and conduction velocity increased over time and exceeded the performance of spheroid-based cardiac tissues. Finally, we highlighted the ability to spatially control the magnitude and direction of contractile force by printing cardiac sheets with different aOBB alignment. Our research opens new avenues to generating functional cardiac tissue with high cell density and complex cellularly alignment. This article is protected by copyright. All rights reserved.
    Keywords:  Aligned; anisotropic; bioprinting; cardiomyocytes; engineered cardiac tissue
    DOI:  https://doi.org/10.1002/adma.202200217
  9. Pharmaceutics. 2022 Mar 29. pii: 737. [Epub ahead of print]14(4):
      In vitro model systems of the blood-brain barrier (BBB) play an essential role in pharmacological research, specifically during the development and preclinical evaluation of new drug candidates. Within the past decade, the trend in research and further development has moved away from models based on primary cells of animal origin towards differentiated models derived from human induced pluripotent stem cells (hiPSs). However, this logical progression towards human model systems from renewable cell sources opens up questions about the transferability of results generated in the primary cell models. In this study, we have evaluated both models with identical experimental parameters and achieved a directly comparable characterisation showing no significant differences in protein expression or permeability even though the achieved transendothelial electrical resistance (TEER) values showed significant differences. In the course of this investigation, we also determined a significant deviation of both model systems from the in vivo BBB circumstances, specifically concerning the presence or absence of serum proteins in the culture media. Thus, we have further evaluated both systems when confronted with an in vivo-like distribution of serum and found a notable improvement in the differential permeability of hydrophilic and lipophilic compounds in the hiPS-derived BBB model. We then transferred this model into a microfluidic setup while maintaining the differential serum distribution and evaluated the permeability coefficients, which showed good comparability with values in the literature. Therefore, we have developed a microfluidic hiPS-based BBB model with characteristics comparable to the established primary cell-based model.
    Keywords:  blood–brain barrier (BBB); brain capillary endothelial cells (BCECs); directed differentiation; human induced pluripotent stem cells (hiPSs); in vitro model system
    DOI:  https://doi.org/10.3390/pharmaceutics14040737
  10. Cancers (Basel). 2022 Apr 15. pii: 2003. [Epub ahead of print]14(8):
      Osteosarcoma is a primary bone tumor characterized by a dismal prognosis, especially in the case of recurrent disease or metastases. Therefore, tools to understand in-depth osteosarcoma progression and ultimately develop new therapeutics are urgently required. 3D in vitro models can provide an optimal option, as they are highly reproducible, yet sufficiently complex, thus reliable alternatives to 2D in vitro and in vivo models. Here, we describe 3D in vitro osteosarcoma models prepared by printing polyurethane (PU) by fused deposition modeling, further enriched with human mesenchymal stromal cell (hMSC)-secreted biomolecules. We printed scaffolds with different morphologies by changing their design (i.e., the distance between printed filaments and printed patterns) to obtain different pore geometry, size, and distribution. The printed PU scaffolds were stable during in vitro cultures, showed adequate porosity (55-67%) and tunable mechanical properties (Young's modulus ranging in 0.5-4.0 MPa), and resulted in cytocompatible. We developed the in vitro model by seeding SAOS-2 cells on the optimal PU scaffold (i.e., 0.7 mm inter-filament distance, 60° pattern), by testing different pre-conditioning factors: none, undifferentiated hMSC-secreted, and osteo-differentiated hMSC-secreted extracellular matrix (ECM), which were obtained by cell lysis before SAOS-2 seeding. Scaffolds pre-cultured with osteo-differentiated hMSCs, subsequently lysed, and seeded with SAOS-2 cells showed optimal colonization, thus disclosing a suitable biomimetic microenvironment for osteosarcoma cells, which can be useful both in tumor biology study and, possibly, treatment.
    Keywords:  bone cancer; bone matrix; cancer tissue engineering; fused deposition modeling; in vitro model; mechanical properties; mesenchymal stromal cell; tumor microenvironment
    DOI:  https://doi.org/10.3390/cancers14082003
  11. Cell Stem Cell. 2022 Apr 13. pii: S1934-5909(22)00150-3. [Epub ahead of print]
      To understand the mechanisms regulating the in vitro maturation of hPSC-derived hepatocytes, we developed a 3D differentiation system and compared gene regulatory elements in human primary hepatocytes with those in hPSC-hepatocytes that were differentiated in 2D or 3D conditions by RNA-seq, ATAC-seq, and H3K27Ac ChIP-seq. Regulome comparisons showed a reduced enrichment of thyroid receptor THRB motifs in accessible chromatin and active enhancers without a reduced transcription of THRB. The addition of thyroid hormone T3 increased the binding of THRB to the CYP3A4 proximal enhancer, restored the super-enhancer status and gene expression of NFIC, and reduced the expression of AFP. The resultant hPSC-hepatocytes showed gene expression, epigenetic status, and super-enhancer landscape closer to primary hepatocytes and activated regulatory regions including non-coding SNPs associated with liver-related diseases. Transplanting the hPSC-hepatocytes resulted in the engraftment of human hepatocytes into the mouse liver without disrupting normal liver histology. This work implicates the environmental factor-nuclear receptor axis in regulating the maturation of hPSC-hepatocytes.
    Keywords:  3D culture; epigenetics; hepatocytes differentiation and maturation; human pluripotent stem cells; nuclear receptors; pBAF; transcriptional regulation
    DOI:  https://doi.org/10.1016/j.stem.2022.03.015