bims-orenst Biomed News
on Organs-on-chips and engineered stem cell models
Issue of 2022–02–27
ten papers selected by
Joram Mooiweer, University of Groningen



  1. Micromachines (Basel). 2022 Feb 16. pii: 305. [Epub ahead of print]13(2):
      Fibroblast cell migration plays a crucial role in the wound-healing process. Hence, its quantitative investigation is important to understand the mechanism of the wound-healing process. The dynamic nature of the wound-healing process can be easily implemented using a microfluidic-based wound-healing assay. This work presented the use of a microfluidics device to simulate traumatic wounds on fibroblast cell monolayers by utilizing trypsin flow and PDMS barrier. In this study, a microfluidic chip with a transparent silk film is reported. The placement of film provides 3D cell culture conditions that mimic a 3D extracellular matrix (ECM) like environment and allows real-time monitoring of cells. A numerical study was conducted to evaluate the influence of dynamic medium-induced shear stress on the base and wall of the microchannel. This could facilitate the optimization of the inlet flow conditions of the media in the channel. At the same time, it could help in identifying stress spots in the channel. The scaffolds were placed in those spots for evaluating the influence of shear forces on the migratory behavior of fibroblast cells. The in vitro microfluidic assembly was then evaluated for cell migration under the influence of external shear forces during the wound-healing phenomena. A faster wound healing was obtained at the end of 24 h of the creation of the wound in the presence of optimal shear stress. On increasing the shear stress beyond a threshold limit, it dissociates fibroblast cells from the surface of the substrate, thereby decelerating the wound-healing process. The above phenomena were transformed in both coplanar microfluidics surfaces (by realizing in the multichannel interlinked model) and transitional microfluidics channels (by realizing in the sandwich model).
    Keywords:  fibroblast; microchannels; multilayered channels; sandwich model; shear stress; wound healing
    DOI:  https://doi.org/10.3390/mi13020305
  2. Biosensors (Basel). 2022 Jan 31. pii: 89. [Epub ahead of print]12(2):
      Malignant melanoma is a type of highly aggressive tumor, which has a strong ability to metastasize to brain, and 60-70% of patients die from the spread of the tumor into the central nervous system. Exosomes are a type of nano-sized vesicle secreted by most living cells, and accumulated studies have reported that they play crucial roles in brain tumor metastasis, such as breast cancer and lung cancer. However, it is unclear whether exosomes also participate in the brain metastasis of malignant melanoma. Here, we established a human blood-brain barrier (BBB) model by co-culturing human brain microvascular endothelial cells, astrocytes and microglial cells under a biomimetic condition, and used this model to explore the potential roles of exosomes derived from malignant melanoma in modulating BBB integrity. Our findings showed that malignant melanoma-derived exosomes disrupted BBB integrity and induced glial activation on the BBB chip. Transcriptome analyses revealed dys-regulation of autophagy and immune responses following tumor exosome treatment. These studies indicated malignant melanoma cells might modulate BBB integrity via exosomes, and verified the feasibility of a BBB chip as an ideal platform for studies of brain metastasis of tumors in vitro.
    Keywords:  blood–brain barrier (BBB); brain metastasis; exosomes; malignant melanoma; organ chip
    DOI:  https://doi.org/10.3390/bios12020089
  3. J Pers Med. 2022 Feb 04. pii: 214. [Epub ahead of print]12(2):
      Cardiomyocytes derived from human pluripotent stem cells (hPSC-CMs) hold a great potential as human in vitro models for studying heart disease and for drug safety screening. Nevertheless, their associated immaturity relative to the adult myocardium limits their utility in cardiac research. In this study, we describe the development of a platform for generating three-dimensional engineered heart tissues (EHTs) from hPSC-CMs for the measurement of force while under mechanical and electrical stimulation. The modular and versatile EHT platform presented here allows for the formation of three tissues per well in a 12-well plate format, resulting in 36 tissues per plate. We compared the functional performance of EHTs and their histology in three different media and demonstrated that tissues cultured and maintained in maturation medium, containing triiodothyronine (T3), dexamethasone, and insulin-like growth factor-1 (TDI), resulted in a higher force of contraction, sarcomeric organization and alignment, and a higher and lower inotropic response to isoproterenol and nifedipine, respectively. Moreover, in this study, we highlight the importance of integrating a serum-free maturation medium in the EHT platform, making it a suitable tool for cardiovascular research, disease modeling, and preclinical drug testing.
    Keywords:  cardiac performance; contractile force; engineered heart tissues; hPSC-CMs; serum-free; versatile platform
    DOI:  https://doi.org/10.3390/jpm12020214
  4. Front Bioeng Biotechnol. 2022 ;10 764237
      The vasculature is an essential, physiological element in virtually all human tissues. Formation of perfusable vasculature is therefore crucial for reliable tissue modeling. Three-dimensional vascular networks can be formed through the co-culture of endothelial cells (ECs) with stromal cells embedded in hydrogel. Mesenchymal stem/stromal cells (MSCs) derived from bone marrow (BMSCs) and adipose tissue (ASCs) are an attractive choice as stromal cells due to their natural perivascular localization and ability to support formation of mature and stable microvessels in vitro. So far, BMSCs and ASCs have been compared as vasculature-supporting cells in static cultures. In this study, BMSCs and ASCs were co-cultured with endothelial cells in a fibrin hydrogel in a perfusable microfluidic chip. We demonstrated that using MSCs of different origin resulted in vascular networks with distinct phenotypes. Both types of MSCs supported formation of mature and interconnected microvascular networks-on-a-chip. However, BMSCs induced formation of fully perfusable microvasculature with larger vessel area and length whereas ASCs resulted in partially perfusable microvascular networks. Immunostainings revealed that BMSCs outperformed ASCs in pericytic characteristics. Moreover, co-culture with BMSCs resulted in significantly higher expression levels of endothelial and pericyte-specific genes, as well as genes involved in vasculature maturation. Overall, our study provides valuable knowledge on the properties of MSCs as vasculature-supporting cells and highlights the importance of choosing the application-specific stromal cell source for vascularized organotypic models.
    Keywords:  endothelial cells; in vitro vascularization; mesenchymal stem cells; microfluidic chip; organ-on-a-chip; pericytes
    DOI:  https://doi.org/10.3389/fbioe.2022.764237
  5. Micromachines (Basel). 2022 Jan 29. pii: 225. [Epub ahead of print]13(2):
      Angiogenesis occurs during both physiological and pathological processes. In this study, a microfluidic chip for the development of angiogenesis was utilized to assess angiogenic sprouting and functional vessel formation. We also found that vascular endothelial growth factor (VEGF) was a determinant of the initiation of vascular sprouts, while the direction of these sprouts was greatly influenced by interstitial flow. Isoforms of VEGF such as VEGF121, VEGF165, and VEGF189 displayed different angiogenic properties on the chip as assessed by sprout length and number, vessel perfusion, and connectivity. VEGF165 had the highest capacity to induce vascular sprouting among the three isoforms assessed and furthermore, also induced functional vessel formation. This chip could be used to analyze the effect of different angiogenic factors and drugs, as well as to explore the mechanism of angiogenesis induced by such factors.
    Keywords:  VEGF; angiogenesis; interstitial flow; microfluidic
    DOI:  https://doi.org/10.3390/mi13020225
  6. Acta Biomater. 2022 Feb 18. pii: S1742-7061(22)00096-4. [Epub ahead of print]
      Proteinuria is a clinical manifestation of chronic kidney disease that aggravates renal interstitial fibrosis (RIF), in which injury of peritubular microvessels is an important event. However, the changes in peritubular microvessels induced by proteinuria and their molecular mechanisms remain unclear. Thus, we aimed to develop a co-culture microfluidic device that contains renal tubules and peritubular microvessels to create a proteinuria model. We found that protein overload in the renal tubule induced trans-differentiation and apoptosis of endothelial cells (ECs) and pericytes. Moreover, profiling of secreted proteins in this model revealed that a paracrine network between tubules and microvessels was activated in proteinuria-induced microvascular injury. Multiple cytokine receptors in this paracrine network were core-fucosylated. Inhibition of core fucosylation significantly reduced ligand-receptor binding ability and blocked downstream pathways, alleviating trans-differentiation and apoptosis of ECs and pericytes. Furthermore, the protective effect of genetic FUT8 deficiency on proteinuria overload-induced RIF and pericyte-myofibroblast trans-differentiation was validated in FUT8 knockout heterozygous mice. In conclusion, we constructed and used a multiple-unit integrated microfluidic device to uncover the mechanism of proteinuria-induced RIF. Furthermore, FUT8 may serve as a hub-like therapeutic target to alleviate peritubular microvascular injury in RIF. STATEMENT OF SIGNIFICANCE: In this study, we constructed a multiple-unit integrated renal tubule-vascular chip. We reproduced human proteinuria on the chip and found that multiple receptors were modified by FUT8-catalyzed core fucosylation (CF) involved in the cross-talk between renal tubules and peritubular microvessels in proteinuria-induced RIF, and inhibiting the FUT8 of receptors could block the tubule-microvessel paracrine network and reverse the damage of peritubular microvessels and renal interstitial fibrosis. This tubule-vascular chip may provide a prospective platform to facilitate future investigations into the mechanisms of kidney diseases, and target-FUT8 inhibition may be an innovative and potential therapeutic strategy for RIF induced by proteinuria.
    Keywords:  Chronic kidney disease; Core fucosylation; Crosstalk; Microfluidic chip; Proteinuria
    DOI:  https://doi.org/10.1016/j.actbio.2022.02.020
  7. J Pers Med. 2022 Jan 24. pii: 148. [Epub ahead of print]12(2):
      Blood-neural barriers regulate nutrient supply to neuronal tissues and prevent neurotoxicity. In particular, the inner blood-retinal barrier (iBRB) and blood-brain barrier (BBB) share common origins in development, and similar morphology and function in adult tissue, while barrier breakdown and leakage of neurotoxic molecules can be accompanied by neurodegeneration. Therefore, pre-clinical research requires human in vitro models that elucidate pathophysiological mechanisms and support drug discovery, to add to animal in vivo modeling that poorly predict patient responses. Advanced cellular models such as microphysiological systems (MPS) recapitulate tissue organization and function in many organ-specific contexts, providing physiological relevance, potential for customization to different population groups, and scalability for drug screening purposes. While human-based MPS have been developed for tissues such as lung, gut, brain and tumors, few comprehensive models exist for ocular tissues and iBRB modeling. Recent BBB in vitro models using human cells of the neurovascular unit (NVU) showed physiological morphology and permeability values, and reproduced brain neurological disorder phenotypes that could be applicable to modeling the iBRB. Here, we describe similarities between iBRB and BBB properties, compare existing neurovascular barrier models, propose leverage of MPS-based strategies to develop new iBRB models, and explore potentials to personalize cellular inputs and improve pre-clinical testing.
    Keywords:  3D models; blood-neural barriers; disease modeling; inner blood-retinal barrier; microphysiological systems; neurovascular unit; organ-on-a-chip
    DOI:  https://doi.org/10.3390/jpm12020148
  8. Int J Mol Sci. 2022 Feb 17. pii: 2204. [Epub ahead of print]23(4):
      In this study, we fabricated a three-dimensional (3D) scaffold using industrial polylactic acid (PLA), which promoted the proliferation and differentiation of human neural stem cells. An industrial PLA 3D scaffold (IPTS) cell chip with a square-shaped pattern was fabricated via computer-aided design and printed using a fused deposition modeling technique. To improve cell adhesion and cell differentiation, we coated the IPTS cell chip with gold nanoparticles (Au-NPs), nerve growth factor (NGF) protein, an NGF peptide fragment, and sonic hedgehog (SHH) protein. The proliferation of F3.Olig2 neural stem cells was increased in the IPTS cell chips coated with Au-NPs and NGF peptide fragments when compared with that of the cells cultured on non-coated IPTS cell chips. Cells cultured on the IPTS-SHH cell chip also showed high expression of motor neuron cell-specific markers, such as HB9 and TUJ-1. Therefore, we suggest that the newly engineered industrial PLA scaffold is an innovative tool for cell proliferation and motor neuron differentiation.
    Keywords:  3D culture; cell chip; gold nanoparticles; industrial polylactic acid; neural stem cell
    DOI:  https://doi.org/10.3390/ijms23042204
  9. Int J Mol Sci. 2022 Feb 14. pii: 2116. [Epub ahead of print]23(4):
      Currently, the mechanism of progression of atopic dermatitis (AD) is not well understood because there is no physiologically appropriate disease model in terms of disease complexity and multifactoriality. Type 2 inflammation, mediated by interleukin (IL)-4 and IL-13, plays an important role in AD. In this study, full-thickness human skin equivalents consisting of human-derived cells were fabricated from pumpless microfluidic chips and stimulated with IL-4 and IL-13. The morphological properties, gene expression, cytokine secretion and protein expression of the stimulated human skin equivalent (HSE) epidermis were investigated. The results showed epidermal and spongy formations similar to those observed in lesions in AD, and decreased expression of barrier-related filaggrin, loricrin and involucrin genes and proteins induced by IL-4Rα signaling. In addition, we induced the expression of carbonic anhydrase II (CAII), a gene specifically expressed in the epidermis of patients with AD. Thus, AD human skin equivalents can be used to mimic the key pathological features of atopic dermatitis, overcoming the limitations of existing studies that rely solely on mouse models and have been unable to translate their effects to humans. Our results will be useful for future research on the development of therapeutic agents for atopic dermatitis.
    Keywords:  atopic dermatitis; carbonic anhydrase II; human skin equivalent; interleukin-13; interleukin-4; skin-on-a-chip
    DOI:  https://doi.org/10.3390/ijms23042116
  10. Clin Exp Metastasis. 2022 Feb 25.
      Extravasation of metastatic cells from the blood or lymphatic circulation and formation of secondary tumor at a distant site is a key step of cancer metastasis. In this study, we report the role of hemodynamic shear stresses in fostering the release of pro-extravasation factors through the mediation of autophagy in cervical cancer HeLa cells. HeLa cells were exposed to physiological shear stress through the microfluidic approach adapted in our previous study on the role of hemodynamic shear stresses in survival of HeLa cells. Herein, an optimum number of passes through a cylindrical microchannel was chosen such that the viability of cells was unaffected by shear. Shear-exposed cells were then probed for their invasive and migratory potential through in vitro migration and invasion assays. The dependence of cancer cells on mechanically-induced autophagy for extravasation was further assessed through protein expression studies. Our results suggest that shear stress upregulates autophagy, which fosters paxillin turnover thereby leading to enhanced focal adhesion disassembly and in turn enhanced cell migration. Concurrently, shear stress-induced secretion of pro-invasive factors like MMP-2 and IL-6 were found to be autophagy-dependent thereby hinting at autophagy as a potential therapeutic target in metastatic cancer. Proposed model for mechano-autophagic modulation of extravasation.
    Keywords:  Autophagy; Cancer metastasis; Fluid shear stress; Invasion; Migration
    DOI:  https://doi.org/10.1007/s10585-022-10156-9